
Fluorine-19 NMR of integral membrane proteins illustrated with
studies of GPCRs
Tatiana Didenko1,3, Jeffrey J Liu1,3, Reto Horst1,4, Raymond C Stevens1

and Kurt Wüthrich1,2
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Fluorine-19 is a spin-½ NMR isotope with high sensitivity and

large chemical shift dispersion, which makes it attractive for

high resolution NMR spectroscopy in solution. For studies of

membrane proteins it is further of interest that 19F is rarely

found in biological materials, which enables observation of

extrinsic 19F labels with minimal interference from background

signals. Today, after a period with rather limited use of 19F NMR

in structural biology, we witness renewed interest in this

technology for studies of complex supramolecular systems.

Here we report on recent 19F NMR studies with the G protein-

coupled receptor family of membrane proteins.
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Introduction
The favorable nuclear spin properties of fluorine-19 were

exploited in 19F NMR experiments with fluorinated

organic compounds already early in NMR history. As a

result, the principles of 19F NMR have been extensively

described in the literature, including serial coverage in

the Annual Reports on NMR Spectroscopy (starting with [1])

and monographs (e.g. [2]). It was also readily recognized

that the absence of a natural 19F background and the high

sensitivity of 19F NMR observation favor the use of

fluorine-19 labels for studies of proteins. 19F NMR labels

incorporated into a protein can provide information on the

local environment of the labels, including solvent

exposure, and on the conformational states and dynamics

of the protein [3–5,6��]. 19F NMR experiments with
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integral membrane proteins further enable characteriz-

ation of variations of motional and structural properties in

different environments, such as lipid vesicles, organic

solvents and detergents [7–17,18��,19�,20�,21�].

As can be seen from Table 1, references to 19F NMR

studies of membrane proteins in the 21st century, and

specifically during the last two years are scarce, and there-

fore our reference list includes only a small number of

featured articles. The renewed interest that we see today is

closely linked with breakthroughs in membrane protein

crystal structure determination, which enable formulation

of new questions about structure/function correlations that

might be investigated with the use of NMR in solution

[22,23]. In this review we focus on recent crystal structure-

guided applications of 19F NMR for studies of G protein-

coupled receptors (GPCRs).

Fluorine-19 NMR in a nutshell
Due to the previously mentioned high popularity during

the early history of NMR, fundamental considerations on

the use of fluorine-19 NMR in structural biology have

been extensively covered in the literature [3–5,6��]. Here

we summarize some features of special interest for studies

of membrane proteins.

The spin-½ fluorine-19 has high sensitivity for NMR obser-

vation, corresponding to 83% of the 1H NMR sensitivity. In

spite of this high intrinsic sensitivity, recent 19F NMR

applications with membrane proteins were dependent on

the availability of state-of-the-art cryoprobes (see Figure 3

for details), due to the fact that membrane proteins must

generally be studied in dilute solutions. For many appli-

cations it is also attractive that informative 19F NMR data

can be collected at field strengths corresponding to 1H

resonance frequencies of 600 MHz or lower. Due to the

large chemical shift anisotropy (CSA) of some 19F-labels

used with proteins (see the next section), experiments at

lower fields often yield superior results to those obtained

with higher-field instruments [6��].

As with other spin-½ NMR nuclei, multidimensional exper-

iments have been developed, which are in common use in

organic chemistry [24]. Heteronuclear and homonuclear

two-dimensional and three-dimensional experiments with
19F have been applied also with soluble proteins, but few

applications have been described with membrane proteins,

probably mainly because of limited sensitivity [20�,25–29].
www.sciencedirect.com
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Table 1

Survey of 19F NMR studies with membrane proteins

Membrane protein Expression system Milieua Yearb (Ref)

M13 phage coat protein E. coli Lipid vesicles 1978 [7,8]

Gramicidin A Synthetic Lipid vesicles 1979 [9,10]

D-Lactate dehydrogenase E. coli Triton X-100, Triton X-100/SDS, C12E7, lipid vesicles 1986 [11,12]

Bacteriorhodopsin E. coli CH3OH/CHCl3, Triton X-100 1987 [13]

Rhodopsin HEK293S (mammalian cell) DM, OG, OG/DMPC 1999 [14,15]

Diacylglycerol kinase E. coli DPC 2002 [16]

CIC-ec1. Cl�/H+ antiporter E. coli DM 2009 [17]

b2-Adrenergic receptor sf9 (insect cell) DDM/CHS, MNG 2012 [18��,21�]

a Abbreviations: SDS, sodium dodecyl sulfate; DM, n-decyl-b-D-maltopyranoside; OG, n-octyl-b-D-glucopyranoside; DMPC, 1,2-dimyristoyl-sn-

glycero-3-phosphocholine; DPC, n-dodecylphosphocholine; DDM, n-dodecyl-b-D-maltopyranoside; CHS, cholesteryl hemisuccinate; MNG, mal-

tose neopentyl glycol.
b The year of the first publication is shown. The references include only the first and the last publications.
Fluorine-19 chemical shifts are outstandingly sensitive to

the local environment characterized by van der Waals

interactions, local electrostatic fields, and similar effects.
19F-labels are therefore highly sensitive reporters of

changes in protein conformation and solvent environ-

ment. Direct applications are measurements of the

immersion depth of membrane proteins into lipophilic

environments by observation of isotope effects between

H2O and D2O [30,31], or of effects from O2 as a para-

magnetic relaxation agent [16,32]. In general, however,

interpretation of 19F chemical shifts in terms of protein

structure, or in terms of the nature of conformational

changes is rather limited [33].

Introducing 19F NMR labels into membrane
proteins
Since 19F does not occur naturally in proteins, its use in

structural biology typically relies on incorporation of

extrinsic 19F-labels at structurally and/or functionally

interesting locations of the target protein. Three methods

of fluorine labeling are described here: chemical conju-

gation of fluorine-containing small molecules with reac-

tive amino acids, biosynthetic introduction of fluorinated

amino acid analogs which are compatible with a natural

aminoacyl-tRNA synthetase, and site-specific incorpora-

tion of fluorinated amino acids which do not have a

naturally compatible aminoacyl-tRNA synthetase.

Chemical modification of amino acid side chains

Fluorine can be posttranslationally introduced by chemical

conjugation of small 19F-containing molecules with reac-

tive –SH or reactive –NHn moieties in proteins. It is an

important advantage of the chemical modification

approach that it can be applied with otherwise unlabeled

proteins, which may either be obtained from natural

sources or as recombinant proteins from cells grown in

an optimized medium. This can be especially useful for

membrane proteins, which are often poorly expressed even

in eukaryotic cell lines. Two preferred reagents for mem-

brane protein studies are 2,2,2-trifluoroethanethiol (TET)

[14,15,18��,20�] and 3-bromo-1,1,1-trifluoroacetone
www.sciencedirect.com 
(BTFA) [16,19�,21�], and 4-(perfluoro-tert-butyl)-pheny-

liodocetamide (PFP) [34] and S-ethyl-trifluorothioacetate

(SETFA) [35] have also been used. TET and BTFA are

commercially available, exhibit high labeling efficiency,

and cause minimal structural perturbations. BTFA–
protein conjugation is a one-step process that results in a

stable thioester bond. Conjugation with TET starts with

activation of cysteine–SH groups by 4,4-dithiodipyridine

(4-DPS), and in a second step a disulfide linkage is formed.

Therefore, TET-labeling may be reversible, especially at

higher temperatures [18��,20�].

Trifluoromethyl probes have higher sensitivity for NMR

detection and usually smaller CSA than monofluorinated

probes, and are therefore the best option for studies of

membrane proteins. Whereas, for example, NMR spectra

of 3-fluorotyrosine-labeled alkaline phosphatase showed

strong deteriorating effects due to CSA-induced line

broadening at higher magnetic fields [36], trifluoromethyl

groups may provide narrow signals even at high fields.

Biosynthetic incorporation of fluorinated amino acid

analogs

Biosynthetic incorporation of fluorinated aliphatic or aro-

matic amino acid analogs has been popular in early 19F

NMR studies of proteins [7,9,11]. For membrane proteins,

fluorinated aromatic amino acids were primarily used,

presumably because the relative scarcity of aromatic amino

acids was expected to simplify the assignment process.

Auxotrophic bacterial strains are available, and fluorinated

aromatic amino acid analogs, such as m-monofluorotyro-

sine, 4-monofluorotryptophan, 5-monofluorotryptophan

and 6-monofluorotryptophan, and o-monofluorophenylala-

nine, m-monofluorophenylalanine and p-monofluorophe-

nylalanine are commercial reagents, which makes the

labeling process quite efficient [37]. 13C-enriched and
15N-enriched fluorinated amino acid analogs have been

used to reduce spectral overlap in 19F-detected multi-

dimensional heteronuclear correlation NMR experiments,

and to obtain NMR-based assignments of the 19F signals
Current Opinion in Structural Biology 2013, 23:740–747
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[28,29,38]. Detailed biosynthetic labeling protocols can be

found in earlier reviews [3,37].

Sequence-specific incorporation of fluorinated amino

acid analogs

A potentially highly exciting approach is sequence-

specific incorporation of 19F-labels into genetically

encoded positions, which entails the use of an extrinsic

orthogonal tRNA/aminoacyl-tRNA synthetase pair to

incorporate 19F-labeled amino acids at positions defined

by a TAG amber codon or a frameshift codon. Phenyl-

alanine analogs such as p-OCF3-Phe and p-CF3-Phe have

been incorporated into soluble proteins [39–42] and at

least one membrane protein [43]. Genetically encoded

labeling was also used for in-cell 19F NMR measurements

[39,44].

Three-dimensional protein structures guide 19F labeling

In principle, strategies for the introduction of 19F-labels

into polypeptide chains can be developed based on the

amino acid sequence, by taking the positions of reactive

amino acids into account, such as cysteines and lysines,

and by identifying interesting sequence locations for

mutagenesis. However, reference to three-dimensional

structures often enables more meaningful strategies.

Examples may include the identification of sites near

active centers or near binding sites for allosteric effectors.

In principle, strategies based on three-dimensional
Figure 1
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structures can lead to triangulation of function-related

interaction networks in larger systems, as will be illus-

trated below with studies of GPCRs.

19F NMR applications with GPCRs
GPCRs constitute the largest membrane protein family in

the human genome, with over 800 unique sequences

[45,46]. They are also important drug targets, since over

30% of all prescription drugs on the market act via GPCRs

[47–49]. GPCRs have a seven-transmembrane-helix top-

ology and contain multiple binding sites for drugs and

allosteric effectors (Figure 1). They recognize a diverse

array of orthosteric ligands, including small organic com-

pounds, peptides and small proteins. Upon ligand binding

a signal is transmitted over a distance of about 30 Å across

the cell membrane to intracellular partner proteins, such

as a G protein or b-arrestin (Figure 1). Other compounds,

such as cholesterol or sodium, may act as allosteric effec-

tors which modulate GPCR activity [50,51]. Depending

on the chemical structure, different ligands have variable

signaling efficacies [18��,52]. More than 20 GPCR crystal

structures have been reported during the last seven years,

which include structures of inactive and active states of

some proteins, and a G protein-bound state of the b2-

adrenergic receptor (b2AR) [53].

GPCRs have so far almost exclusively been expressed in

eukaryotic systems, such as yeast, insect or mammalian
nd

Cholesterol

tein β-arrestin

VI

VIII
19F 19F

VII

Current Opinion in Structural Biology

transmembrane helices, which stretch across the lipid bilayer cell

g site (the arrow indicates mobility in the ligand binding site). Allosteric

sterol) and in the center of the bundle (Na+). Binding of drug molecules to

ample, G protein and b-arrestin. The two red circles indicate locations for

ional changes associated with transmembrane signaling between the

ce of about 30 Å.
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Figure 2
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Locations of 19F-labels that were recently used for b2AR functional studies [18��,19�,20�,21�]. The green and yellow spheres indicate three TET-labeled

cysteine residues in positions 265, 327 and 341. (A) Side view of b2AR. An agonist, BI-167107, in the orthosteric binding site is drawn in cyan. (B) View

of the cytoplasmic surface of b2AR.

Figure 3
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Mutagenesis-based sequence-specific 19F NMR assignments in b2AR.

564 MHz 1D 19F NMR spectra at 298 K are shown of the carazolol

complexes with the TET-labeled wild-type protein, b2AR (TETC265,
TETC327, TETC341), and for three single-residue TET-labeled variants,

b2AR (TETC265, C327S, C341A), b2AR (C265A, TETC327, C341A) and

b2AR (C265A, C327S, TETC341). The resonance assignments derived

from comparison of the four spectra are indicated at the top. The spectra

were recorded with a Bruker Avance 600 spectrometer (Bruker Biospin,

Billerica, MA) equipped with a 5 mm 1H/19F, 13C/15N QCI cryoprobe.

Reproduced from [18��].
cells, which are not readily amenable to 15N and 13C

labeling for NMR studies. Chemical conjugation of 19F-

labels into GPCRs for 19F NMR experiments is therefore

an attractive approach for studies in non-crystalline mili-

eus.

Questions for 19F NMR with GPCRs

A key problem in GPCR research is to rationalize how the

receptors transduce information encoded in the chemical

structures of orthosteric ligands across the cell membrane

to appropriate intracellular partners, such as the G protein

and b-arrestin (Figure 1). While crystal structures

describe the molecular architecture in great detail and

may identify structural differences between activated and

inactive forms of a given GPCR, 19F NMR can provide

additional information on local conformational poly-

morphisms and the rate of associated conformational

exchange processes.

19F labeling and sequence-specific NMR assignments of

b2AR
19F NMR studies of the b2AR have recently been

reported by two different groups [18��,19�,20�,21�].
b2AR contains three native cysteines in positions 265,

327 and 341, which are located near the cytoplasmic

protein surface (Figure 2). One project made use of the

accessibility of these cysteines for covalent labeling with

TET [18��,20�]. The resulting 1D 19F NMR spectrum

consists of three peaks (Figure 3, top trace). Site-specific

mutagenesis was employed to obtain single-residue

labeled b2AR variants. Comparison of the four spectra

in Figure 3 then yielded sequence-specific assignments of

the three 19F NMR signals, and in functional studies the

single-residue TET-labeled proteins enabled detailed
www.sciencedirect.com 
line shape analyses of the individual signals [18��,20�].
In the second project the residue Cys265 was selectively

labeled with BTFA, and the observed 19F NMR signal

was assigned to this residue [19�,21�].
Current Opinion in Structural Biology 2013, 23:740–747
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b2AR is a favorable molecule for the use of 19F NMR,

since reactive cysteine residues near the cytoplasmic

surface are accessible for 19F-labeling. In the early work

with rhodopsin [14,15] and in ongoing experiments with

several human GPCRs [unpublished], cysteine residues

had to be engineered into informative sequence positions,

which then also requires special care to ascertain that such

modifications preserve the biological activity.

19F NMR studies of GPCR activation
19F NMR studies of rhodopsin were started prior to the

availability of high-resolution GPCR crystal structures

[14,15]. In these seminal experiments, Khorana and co-

workers introduced TET-labels to endogenous as well as

engineered cysteine residues. 19F NMR spectra of various

mutant rhodopsins containing only a single 19F-label were

recorded in the dark and under light exposure. Chemical

shift changes specific to receptor activation were thus

observed, which elegantly demonstrated that 19F NMR

experiments can be used to monitor local conformational

changes related to GPCR activation. In additional studies,

close contacts in the three-dimensional structure were
Figure 4
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quantified by collecting 19F–19F nuclear Overhauser

effects (NOEs) between pairs of TET-labels, which

had been incorporated by site-specific introduction of

TET-accessible cysteines to obtain two-residue TET-

labeled rhodopsin [15].

Unlike rhodopsin, b2AR is activated by binding to diffu-

sible ligands, which exhibit a wide range of different

efficacies in their receptor interactions, depending on

their chemical structures. In the experiments of

Figure 4a, 19F NMR spectra of b2AR mutants containing

single TET-labeled cysteine residues were recorded for

complexes with different pharmacological ligands. Two

largely independent equilibria were thus discovered by

observation of Cys265 in helix VI, and Cys327 in helix

VII, respectively. Exchange between the different con-

formations is slow on the chemical shift frequency scale,

with k < 10 s�1 [20�], so that each of the two equilibria is

manifested by two partially overlapped signals which

have variable relative intensities in complexes with

different ligands [18��]. Novel insights into correlations

between the chemical structure of different orthosteric
Current Opinion in Structural Biology
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Figure 5
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Bl
+
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564 MHz 1D 19F NMR spectra of b2AR (C77V, C275S, BTFAC265, C378A,

C406A) at 298 K. Cz, complex with the inverse agonist carazolol; Apo,

apo-b2AR; BI, complex with the full agonist Bl-167107; BI + Nb80,

complex with BI and a G-protein-mimicking nanobody. The sharp peak

at �83.5 is from a small-molecule reference, and D indicates a

background signal from partially 19F-labeled cysteines in other parts of

the b2AR structure. The vertical lines indicate peak positions of BTFAC265

assigned to the complexes of b2AR with carazolol, Bl-167107, and Bl-

167107/Nb80, as indicated at the top.

Reproduced from [19�].
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ligands and the resulting downstream signaling could thus

be obtained. Specifically, ligands that shift the confor-

mational equilibrium manifested in the 19F NMR signal

of TETCys265 to the activated state are likely to signal

through the canonical G protein pathway, whereas ligands

that lead to activation observed on TETCys327 were

found to signal primarily through the b-arrestin pathway

(Figure 4). Interestingly, although there is no residual

signal intensity after deconvolution with the two reson-

ances I and A in Figure 4a, which would indicate the

presence of additional states, the observation of two

uncoupled conformational equilibria at the sequence

positions 265 and 327 shows that there are at least three

(assuming that there is a single inactive state) or four

locally different states in b2AR, indicating that the func-

tion of this GPCR is related to an intricate network of

local dynamic structural polymorphisms.

With the aforementioned single-residue BTFACys265 var-

iant of b2AR, a similar strategy to the experiments in

Figure 4a was used. When the protein was solubilized in

DDM micelles, evidence was obtained for the presence

of two or multiple states of the protein in fast exchange on

the chemical shift frequency scale [19�]. As a con-

sequence, a single 19F NMR signal was observed, which

showed different chemical shifts when different ligands,

and in one experiment a ligand and a nanobody were

bound to b2AR (Figure 5). When the BTFA-labeled

b2AR was solubilized with the detergent maltose-neo-

pentyl-glycol (MNG-3), the authors concluded that the

exchange between different states was slowed down, and

that the 19F NMR signals manifested at least three

different states of b2AR in slow exchange on the chemical

shift frequency scale.

From a techniques viewpoint it is of interest that the

aforementioned two studies with chemically different
19F-labels attached to the same residue, Cys265, provided

complementary information. This comes rather as unex-

pected, since numerous earlier studies with a variety of

different proteins indicated that replacement of natural

amino acids with fluorinated analogs caused at most minor

perturbations of the protein structures [54,55,56], and the

introduction of TET-labels or a BTFA-label in GPCRs

did not abolish their functions in the studies reported so

far [14,15,18��,19�,20�,21�]. There is thus an indication

that more comprehensive information may be obtained

from repeating 19F NMR experiments with chemically

different 19F-containing groups even if they are attached

to the same amino acids in membrane proteins.

Outlook
Due to recent advances in instrumentation, which

ensured high sensitivity at moderate field strength, 19F

NMR is being recognized as an attractive technique for

structural biology of complex systems, in particular mem-

brane proteins. 19F NMR can be used as a ‘probe method’
Current Opinion in Structural Biology 2013, 23:740–747
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to investigate conformational equilibria and associated

rate processes, and can serve as a lead for the use of stable

isotope labeling-based NMR studies of structural details

associated with the plasticity of the system. With future

improvements in membrane protein biochemistry, multi-

dimensional NMR experiments with 19F NMR may open

additional new avenues for studies of membrane proteins.
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