

- Typical NMR tube diameter: 5 mm
- Sample volume: > 600 μL
- Smaller volume (200-300 μL) in Shigemi tubes
- Concentration for structure determination: several hundred μM
- Lower concentration for ligand binding
- Signal to noise ratio (S/N)  $\alpha \sqrt{n}$
- Cryoprobe: electronics cooled to ~ 20K, higher
  S/N (up to 4 fold), lower concentrations possible
- Higher S/N (& better resolution) at higher magnetic field
- Any buffer but preferably salt < 200 mM, pH < 7.5
- For homonuclear experiments, phosphate buffer or deuterated buffer
- 5-10% deuterated solvent (<sup>2</sup>H<sub>2</sub>O) for lock

2-dimensional (2D) NMR spectroscopy

Correlation between nuclear dipoles

- Through-bond interactions (J-coupling) < 4 bonds apart
- Through-space interactions (nuclear Overhauser effect, NOE) < 5 Å apart</li>



Common 2D homonuclear (<sup>1</sup>H) NMR experiments

- Useful for proteins up to ~ 100 residues
- Also useful for small(er) molecules

**COSY** (COrrelation SpectroscopY): crosspeaks between J-coupled spins (2 or 3 bonds apart)

**TOCSY** (Total Correlation SpectroscopY): crosspeaks within J-coupled networks (spin systems)

**NOESY** (NOE SpectroscopY): crosspeaks between spins close in space (< 5Å apart)

### 1D NMR spectrum



Cavanagh, J., Fairbrother, W.J., Palmer, A.G.III, Rance, M., Skelton, N.J. Protein NMR Spectroscopy: Principles and Practice, 2<sup>nd</sup> edition, 2007, Academic Press

#### TABLE 1 RANDOM COIL 'H CHEMICAL SHIFTS FOR THE 20 COMMON AMINO ACIDS WHEN FOLLOWED BY ALANINE

| Residue          | NH   | Hα   | $H^{\beta}$ | Others                                                                                           |
|------------------|------|------|-------------|--------------------------------------------------------------------------------------------------|
| Ala              | 8.24 | 4.32 | 1.39        |                                                                                                  |
| Cys (reduced)    | 8.32 | 4.55 | 2.93, 2.93  |                                                                                                  |
| Cys (oxidized)   | 8.43 | 4.71 | 3.25, 2.99  |                                                                                                  |
| Asp              | 8.34 | 4.64 | 2.72, 2.65  |                                                                                                  |
| Glu              | 8.42 | 4.35 | 2.06, 1.96  | yCH, 2.31, 2.31                                                                                  |
| Phe              | 8,30 | 4.62 | 3.14, 3.04  | 2,6H 7.28; 3.5H 7.38; 4H 7.32                                                                    |
| Gly              | 8.33 | 3.96 |             |                                                                                                  |
| His              | 8.42 | 4.73 | 3.29, 3.16  | 2H 8.58; 4H 7.29                                                                                 |
| fle              | 8.00 | 4.17 | 1.87        | γCH <sub>2</sub> 1.45, 1.16; γCH <sub>2</sub> 0.91; δCH <sub>2</sub> 0.86                        |
| Lys              | 8.29 | 4.32 | 1.84, 1.75  | γCH <sub>2</sub> 1.44, 1.44; δCH <sub>2</sub> 1.68, 1.68; εCH <sub>2</sub> 2.99, 2.99; εNH; 7.81 |
| Leu              | 8.16 | 4.34 | 1.62, 1.62  | γCH 1.59: δCH, 0.92, 0.87                                                                        |
| Met              | 8.28 | 4,48 | 2.11, 2.01  | $\gamma CH_{2}$ 2.60, 2.54; $\epsilon CH_{2}$ 2.10                                               |
| Asn              | 8.40 | 4.74 | 2.83. 2.75  | yNH, 7.59, 6.91                                                                                  |
| Pro              | -    | 4.42 | 2.29, 1.94  | yCH, 2.02, 2.02; &CH, 3.63, 3.63                                                                 |
| Gln              | 8.32 | 4.34 | 2.12, 1.99  | vCH, 2.36, 2.36; 8NH, 7.52, 6.85                                                                 |
| Arg              | 8.23 | 4.34 | 1.86, 1.76  | YCH, 163, 163, 6CH, 320, 320; ENH 807                                                            |
| Scr              | 8.31 | 4.47 | 3.89. 3.87  |                                                                                                  |
| Thr              | 8.15 | 4.35 | 4.24        | vCH, 1.21                                                                                        |
| Val              | 8.03 | 4.12 | 2.08        | vCH, 0.94, 0.93                                                                                  |
| Trp <sup>a</sup> | 8.25 | 4.66 | 3.29. 3.27  | 2H 7 27: 4H 7 55: 5H 7 18: 6H 7 25: 7H 7 50                                                      |
| Tyr              | 8.12 | 4.55 | 3.03, 2.98  | 2,6H 7.14; 3,5H 6.84                                                                             |

Chemical shifts are referenced to internal DSS at 25 °C, pH ~5.0.

\* Measured using a peptide with free N- and C-termini.

Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR. 1995 Jan;5(1):67-81.

COSY (COrrelation SpectroscopY): crosspeaks between J-coupled spins • TOCSY (Total Correlation SpectroscopY): crosspeaks within J-coupled networks •+•



NOESY (NOE SpectroscopY): crosspeaks between spins close in space (< 5Å apart)

- sequential assignment: connect sequential spin systems (find neighbors)
- structural information



Wüthrich, K. NMR of Proteins and Nucleic Acids, 1986, John Wiley & Sons

### NOESY + O COSY+TOCSY •





Common 2D heteronuclear NMR experiments

- Useful for both small and large proteins
- Typically performed on proteins labeled with <sup>15</sup>N and/or <sup>13</sup>C
- To incorporate <sup>15</sup>N or <sup>13</sup>C into proteins, the proteins are expressed in *E. coli* or yeast in a growth medium that only contains <sup>15</sup>N or <sup>13</sup>C

<sup>1</sup>H-<sup>15</sup>N HSQC (Heteronuclear Single Quantum Correlation / Coherence): crosspeaks between <sup>1</sup>H and <sup>15</sup>N atoms that are directly bonded

<sup>1</sup>H-<sup>13</sup>C HSQC: crosspeaks between <sup>1</sup>H and <sup>13</sup>C atoms that are directly bonded



### <sup>1</sup>H-<sup>15</sup>N HSQC spectrum of a protein with ~ 160 residues



Large proteins (or other molecules or molecular assemblies)

 <sup>15</sup>N and <sup>13</sup>C labeling combined with partial or complete <sup>2</sup>H labeling (deuteration) to reduce relaxation



Garrett DS, Seok YJ, Liao DI, Peterkofsky A, Gronenborn AM, Clore GM. Solution structure of the 30 kDa N-terminal domain of enzyme I of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system by multidimensional NMR. Biochemistry. 1997 Mar 4;36(9):2517-30. Large proteins (or other molecules or molecular assemblies)

**TROSY** (Transverse Relaxation-Optimized SpectroscopY):

- similar to HSQC
- sharper peaks for large molecules
- at high magnetic fields



Rule, G.S. and Hitchens, T.K. Fundamentals of Protein NMR Spectroscopy, 2006, Springer







HNCOCACB



| Residue          | C=0   | Cα   | $C^{\ell}$ | Others                                                                              |
|------------------|-------|------|------------|-------------------------------------------------------------------------------------|
| Ala              | 177.8 | 52.5 | 19.1       |                                                                                     |
| Cys (reduced)    | 174.6 | 58.2 | 28.0       |                                                                                     |
| Cys (oxidized)   | 174.6 | 55.4 | 41.1       |                                                                                     |
| Asp              | 176.3 | 54.2 | 41.1       | γCO 180.0                                                                           |
| Glu              | 176.6 | 56.6 | 29.9       | γCH <sub>2</sub> 35.6; δCO 183.4                                                    |
| Phe              | 175.8 | 57.7 | 39.6       | 1C 138.9; 2,6CH 131.9; 3,5CH 131.5; 4CH 129.9                                       |
| Gly              | 174.9 | 45.1 |            |                                                                                     |
| His              | 174.1 | 55.0 | 29.0       | 2CH 136.2; 4CH 120.1; 5C 131.1                                                      |
| Ile              | 176.4 | 61.1 | 38.8       | γCH <sub>2</sub> 27.2; γCH <sub>3</sub> 17.4; δCH <sub>3</sub> 12.9                 |
| Lys              | 176.6 | 56.2 | 33.1       | γCH <sub>2</sub> 24.7; δCH <sub>2</sub> 29.0; εCH <sub>2</sub> 41.9                 |
| Leu              | 177.6 | 55.1 | 42.4       | γCH 26.9; δCH <sub>3</sub> 24.9, 23.3                                               |
| Met              | 176.3 | 55.4 | 32.9       | γCH <sub>2</sub> 32.0; εCH <sub>3</sub> 16.9                                        |
| Asn              | 175.2 | 53.1 | 38.9       | γCO 177.2                                                                           |
| Pro              | 177.3 | 63.3 | 32.1       | γCH <sub>2</sub> 27.2; δCH <sub>2</sub> 49.8                                        |
| Gln              | 176.0 | 55.7 | 29.4       | γCH <sub>2</sub> 33.7; δCO 180.5                                                    |
| Arg              | 176.3 | 56.0 | 30.9       | γCH <sub>2</sub> 27.1; δCH <sub>2</sub> 43.3; εC 159.5                              |
| Ser              | 174.6 | 58.3 | 63.8       |                                                                                     |
| Thr              | 174.7 | 61.8 | 69.8       | γCH <sub>3</sub> 21.5                                                               |
| Val              | 176.3 | 62.2 | 32.9       | γCH <sub>3</sub> 21.1, 20.3                                                         |
| Trp <sup>a</sup> | 176.1 | 57.5 | 29.6       | 2CH 127.4; 3C 111.2; 4CH 122.2; 5CH 124.8; 6CH 121.0; 7CH 114.7; 8C 138.7; 9C 129.5 |
| Tyr              | 175.9 | 57.9 | 38.8       | 1C 130.6; 2,6CH 133.3; 3,5CH 118.2; 4C 157.3                                        |

RANDOM COIL <sup>13</sup>C CHEMICAL SHIFTS FOR THE 20 COMMON AMINO ACIDS WHEN FOLLOWED BY ALANINE

Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR. 1995 Jan;5(1):67-81.

<sup>13</sup>C chemical shifts are sensitive to secondary structure  $\rightarrow$  Prediction of  $\Phi$  and  $\Psi$  dihedral angles



Rule, G.S. and Hitchens, T.K. Fundamentals of Protein NMR Spectroscopy, 2006, Springer

# <sup>13</sup>C chemical shifts can be used to estimate secondary structure propensity in intrinsically disordered proteins



Marsh JA, Singh VK, Jia Z, Forman-Kay JD. Sensitivity of secondary structure propensities to sequence differences between alpha- and gamma-synuclein: implications for fibrillation. *Protein Sci.* 2006;15(12):2795-2804.

Examples of heteronuclear 3D experiments

**HNCO** HN(i), N(i), C'(i-1) HN(CA)CO HN(i), N(i), C'(i)+C'(i-1)HN(i), N(i), C $\alpha$ (i)+C $\alpha$ (i-1) HNCA HN(CO)CA HN(i), N(i), C $\alpha$ (i-1) **HNCACB** HN(i), N(i), C $\alpha$ (i)+C $\beta$ (i)+C $\alpha$ (i-1)+C $\beta$ (i-1) CBCA(CO)NH HN(i), N(i), C $\alpha$ (i-1)+C $\beta$ (i-1) C(CO)NH HN(i), N(i), all C(i-1)H(CCO)NH HN(i), N(i), all HC(i-1)CCH-TOCSY HC(i), C(i), all C(i)HCCH-TOCSY HC(i), C(i), all HC(i)15N-edited TOCSY HN(i), N(i), all H(i) 15N-edited NOESY HN(i), N(i), H(<5Å) 13C-edited NOESY HC(i), C(i), H(<5Å)

### Sequential assignment using 3D heteronuclear experiments



3D <sup>15</sup>N-edited NOESY: Distance information



### 3D <sup>15</sup>N-edited NOESY: Distance information



Structure calculation:

Molecular dynamics simulation using distance (and other) restraints





# **Chemical Exchange**



$$k_{ex} = k_1 + k_2$$

Exchange rate

 $k_{ex} \gg \Delta \nu$  : fast exchange Single line:  $\omega = p_A \omega_A + p_B \omega_B$ 

Population (fraction) of A

 $k_{ex} \approx \Delta v$ : intermediate exchange broad line(s)

 $k_{ex} \ll \Delta \nu$  : slow exchange Two separate lines at  $\omega_A$  and  $\omega_B$ Integrated intensities  $\propto p_A$  and  $p_B$ 

Rule, G.S. and Hitchens, T.K. Fundamentals of Protein NMR Spectroscopy, 2006, Springer



$$k_{ex} = k_{on}[L] + k_{off}$$

Exchange rate

$$K_d = \frac{k_{off}}{k_{on}} = 100 \mu M$$



Rule, G.S. and Hitchens, T.K. Fundamentals of Protein NMR Spectroscopy, 2006, Springer

## Mapping ligand binding using chemical shift perturbations



Briknarová K, Zhou X, Satterthwait A, Hoyt DW, Ely KR, Huang S. Structural studies of the SET domain from RIZ1 tumor suppressor. Biochem Biophys Res Commun. 2008 Feb 15;366(3):807-13.

Hydrogen exchange

- Hydrogen atoms attached to N, O and S exchange with hydrogens in H<sub>2</sub>O
- Hydrogens that exchange fast are not observable
- When the protein is dissolved in D<sub>2</sub>O (heavy water) instead of H<sub>2</sub>O, exchangeable hydrogens will be replaced by D (= deuteron = <sup>2</sup>H)
- Exchangeable hydrogens that participate in hydrogen bonding are (somewhat) protected from exchange with solvent



Wüthrich, K. NMR of Proteins and Nucleic Acids, 1986, John Wiley & Sons