- Atomic nuclei have spin *and magnetic* dipole moment $\mu = \gamma I$
- $1H$, $13C$, $15N$ have spin $1/2$ good for NMR!
- Nuclei (with spin $\frac{1}{2}$) have two states (up and down) in a magnetic field
- The energy difference between the states is $\Delta E = \gamma \hbar B$, which corresponds to frequency of electromagnetic radiation $\omega = \gamma B$ ($\nu = \frac{\gamma B}{2\pi}$) (Larmor frequency)
- The populations of the two states differs slightly \cdot the bulk sample has a magnetic dipolar moment along z (aligned with \bf{B})

The magnetic field at the nucleus differs from the external magnetic field due to the movement of electrons around the nucleus ∴ different nuclei in a molecule have slightly different Larmor frequencies

• Chemical shift (does not depend on external magnetic field!):

$$
\delta = \frac{500.1306885 - 500.1300000}{500.130000} * 10^6 = 1.3766 ppm
$$

- J-coupling (scalar coupling) = interaction between nuclear spins mediated by electrons that form the bond(s) between the nuclei
- Energy of spin I in the presence of J-coupling to spin S:

Cavanagh, J., Fairbrother, W.J., Palmer, A.G.III, Rance, M., Skelton, N.J. Protein NMR Spectroscopy: Principles and Practice, 2nd edition, 2007, Academic Press

TABLE 1 RANDOM COIL ¹H CHEMICAL SHIFTS FOR THE 20 COMMON AMINO ACIDS WHEN FOLLOWED BY ALANINE

Chemical shifts are referenced to internal DSS at 25 °C, pH \sim 5.0.

¹ Measured using a peptide with free N- and C-termini.

Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR. 1995 Jan;5(1):67-81.

TABLE 2

	RANDOM COIL ¹³ C CHEMICAL SHIFTS FOR THE 20 COMMON AMINO ACIDS WHEN FOLLOWED BY ALANINE	
--	--	--

Chemical shifts are referenced to internal DSS at 25 °C, pH \sim 5.0.

^a Measured using a peptide with free N- and C-termini,

Wishart DS, Bigam CG, Holm A, Hodges RS, Sykes BD. 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR. 1995 Jan;5(1):67-81.

Description and analysis of rotations (oscillations) Rotation with angular velocity $\boldsymbol{\omega}$:

 $v:$ frequency in s^{-1} =Hz $\omega = 2\pi\nu$ angular velocity (angular frequency) in radians/s

https://www.mathsisfun.com/algebra/vectors-cross-product.html

Semi-classical model (Bloch equations)

Magnetic dipole μ experiences torque in magnetic field:

$$
\mu(t) \times \mathbf{B} = \frac{dI(t)}{dt} = \frac{1}{\gamma} \frac{d\mu(t)}{dt}
$$

$$
\frac{d\mu(t)}{dt} = \mu(t) \times \gamma \mathbf{B} = \frac{-\gamma \mathbf{B}}{\omega} \times \mu(t)
$$

 $\mu(t)$ rotates (precesses) with angular velocity $|\omega = -\gamma B|$ Larmor frequency

Note: $\boldsymbol{\omega} = -\gamma \boldsymbol{B}$: $\boldsymbol{\omega}$ and \boldsymbol{B} have opposite direction for positive γ and the same direction for negative γ . In all the diagrams, I'll draw them in the same direction.

Application of perpendicular (horizontal) magnetic field $\mathbf{B}_1(t)$ that oscillates with angular velocity $\omega = -\gamma B$:

$$
\frac{d\mu(t)}{dt} = -\gamma(B + B_1(t)) \times \mu(t)
$$

Switch to a coordinate frame that rotates with angular velocity $\omega = -\gamma B$:

$$
\frac{d\mu(t)}{dt} = -\gamma B_1 \times \mu(t)
$$

 $\mu(t)$ rotates with angular velocity $\omega_1 = -\gamma B_1$ around B_1 in the rotating frame!

Rotating frame (angular velocity $\boldsymbol{\omega} = -\gamma \boldsymbol{B}$):

 B_1 along x: Rotation in the y-z plane with angular velocity ω_1 $\alpha = \omega_1 t$

90° pulse: $\alpha = \omega_1 t =$ π 2 $M_z = M_0 \rightarrow -M_v = M_0$

Rotating frame (angular velocity $\omega = -\gamma B$):

180° pulse: $\alpha = \omega_1 t = \pi$ $M_{Z} = M_{0} \rightarrow -M_{Z} = M_{0}$

Rotating frame (angular velocity $\omega = -\gamma B$):

 B_1 along y: Rotation in the x-z plane with angular velocity ω_1 $\alpha = \omega_1 t$

When the angular velocity ω_{rf} of the perpendicular magnetic field $\mathbf{B}_1(t)$ differs (somewhat) from Larmor frequency $\boldsymbol{\omega} = -\gamma \boldsymbol{B}$: Pulses still work as long as $|\gamma B_1| \gg |\omega - \omega_{rf}|$

Rotating frame (angular velocity ω_{rf}):

Rotating frame (angular velocity ω_{rf}):

$$
\frac{d\mu(t)}{dt} = (\omega - \omega_{rf} + \omega_1) \times \mu(t)
$$
\n
$$
\rho_0
$$
\n
$$
\omega_{eff} = \Omega + \omega_1
$$
\nRotation around a tilted axis\n
$$
\omega_{eff} = \Omega + \omega_1
$$
\n
$$
\omega_{eff} \approx \omega_1
$$

Rotation around axis in a horizontal plane

Another way to look at it:

Rotating frame (angular velocity ω_{rf}):

$$
\frac{d\mu(t)}{dt} = -\gamma (B + B_1) \times \mu(t) - \omega_{rf} \times \mu(t)
$$

$$
= -\gamma \left(B + \frac{\omega_{rf}}{\gamma} + B_1 \right) \times \mu(t)
$$

 ΔB (residual vertical magnetic field in the rotating frame)

Rotation around B_{eff} with angular velocity $\omega_{eff} = -\gamma B_{eff}$ Rotating frame (angular velocity ω_{rf}):

$$
\frac{d\mu(t)}{dt} = \left(\frac{\omega - \omega_{rf}}{\Omega \text{ (offset)}} + \omega_1\right) \times \mu(t) = -\gamma \left(\frac{\omega_{rf}}{\gamma} + B_1\right) \times \mu(t)
$$

 ΔB (residual vertical magnetic field in the rotating frame)

Basic NMR experiment

Relaxation delay - Allows magnetization to return to equilibrium along z

90° pulse - Tips magnetization into the x-y plane

Free induction decay (FID) - Magnetization precesses in the x-y plane, this induces electrical current in a coil and is detected

Repeat n times (to improve signal to noise ratio)

Rotating frame (angular velocity ω_{rf})

90° pulse

Free induction decay (FID)

x y z \boldsymbol{B}_{0} Ω M $\frac{1}{2}$ 3 Δ

Turn on B_1 for time t such that $\alpha = \omega_1 t = |- \gamma B_1 | t =$ $\frac{\pi}{2}$ 2

Magnetization precesses in the x-y plane with frequency Ω (and relaxes back to equilibrium)

Description and analysis of rotations (oscillations): Rotation with angular velocity Ω

 $M_x = M_0 \cos \Omega t$ $M_v = M_0 \sin \Omega t$ $M_x = M_0 \cos(-\Omega t) = M_0 \cos \Omega t$ $M_v = M_0 \sin(-\Omega t) = -M_0 \sin \Omega t$

Need both M_x and M_y components to distinguish the direction (sign) of rotation

 M_{χ} and M_{χ} components formally treated like real and imaginary components of a complex number:

$$
M = M_x + iM_y = M_0 \cos \Omega t + iM_0 \sin \Omega t
$$

 $M = M_0 (\cos \Omega t + i \sin \Omega t) = M_0 e^{i \Omega t}$

Return to equilibrium: relaxation

• Longitudinal (spin-lattice) relaxation

$$
M_Z = M_0 (1 - e^{-R_1 t}) = M_0 (1 - e^{-\frac{t}{T_1}})
$$

Return to equilibrium: relaxation

• Transverse (spin-spin) relaxation:

$$
M_{xy} = M_0 e^{-R_2 t} e^{i\Omega t} = M_0 e^{-\frac{t}{T_2}} e^{i\Omega t}
$$

[https://en.wikipedia.org/wiki/Relaxation_\(NMR\)](https://en.wikipedia.org/wiki/Relaxation_(NMR))

Converting oscillating signal to a frequency spectrum

Fourier transform
$$
S(\omega) = \int_{-\infty}^{\infty} s(t)e^{-i\omega t} dt
$$

Oscillation
$$
s(t) = M_0 e^{-R_2 t} e^{i\Omega_0 t}
$$

$$
S(\omega) = \int_{0}^{\infty} M_0 e^{-R_2 t} e^{i\Omega_0 t} e^{-i\omega t} dt
$$

\n
$$
= \int_{0}^{\infty} M_0 e^{[i(\Omega_0 - \omega) - R_2]t} dt = \int_{0}^{\left[i(\Omega_0 - \omega) - R_2\right]dt} M_0 e^{y} \frac{dy}{i(\Omega_0 - \omega) - R_2}
$$

\n
$$
= \frac{M_0}{i(\Omega_0 - \omega) - R_2} \int e^{y} dy = \frac{M_0}{i(\Omega_0 - \omega) - R_2} [e^{i(\Omega_0 - \omega)t} e^{-R_2 t}]_{t=0}^{\infty}
$$

\n
$$
(0-1)
$$

