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Abstract Spheres, cylinders or ellipsoids, whose hydro-
dynamic properties can be computed from analytical or
semi-analytical expressions, have been traditionally used
as low-resolution approximate descriptors of macromolec-
ular size and shape. However, these simple geometrical
bodies can seldom faithfully reproduce any detail of a mac-
romolecular surface. A more sophisticated procedure uti-
lizes instead ensembles of spheres (“beads”) of various di-
ameters in an appropriate spatial arrangement to model the
macromolecule. This method has not yet gained wide-
spread application, partially because of the difficulties in-
volved both in the generation and in the handling of the
models, and because of the rather complicated mathemat-
ics involved in the computation of the hydrodynamic pa-
rameters, requiring non-trivial dedicated computer soft-
ware virtually unavailable in the public-domain. A notable
exception was the “TRV” program and its predecessors de-
veloped by the Garcia de la Torre’s group, which have been
recently updated and made available as the “HYDRO”
package (Garcia de la Torre et al. 1994).

To make accessible as many aspects as possible of this
powerful modelling procedure, we have assembled a set of
computer programs written in C language called BEAMS
(BEAds Modelling System), which are described in this
paper. The main BEAMS programs provide the user with
a choice of four different methods for the computation of
the hydrodynamic and structural parameters of ensembles
of beads, with the option of automatically generating many
random conformations of linear, branched and/or looped
strings-of-beads. Selected models can be visualized from
any desired point of view and manipulated interactively on
a high-resolution colour monitor, and plotted as two-
dimensional projections on an eight colour plotter. A fur-
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ther option permits the calculation of the parameters for
segmentally flexible models composed of two subunits.
Two ancillary programs, PROMOLP (written in Visual-
Basic for Windows™) and GRUMB (written in C for gen-
eral PC use) help the user in the definition of the number
and radius of the beads to be used for the models, and in
the interactive construction of spatially pre-defined mod-
els. BEAMS should be especially useful in the generation
of low-resolution models of large-sized proteins which are
difficult or impossible to solve with high-resolution tech-
niques such as X-ray crystallography or NMR, and, in mul-
tidomain/modular proteins, in defining the overall spatial
arrangement of the various domains/modules from their
known 3D-structures.

Key words Translational diffusion - Rotational diffusion -
Relaxation times - Intrinsic viscosity - Protein structure
and dynamics

1. Introduction

The determination of the three-dimensional (3D) structure
of proteins and other biomacromolecules is a crucial step
in the understanding of their biological functions. High-
resolution techniques, namely X-ray:crystallography and,
more recently, nuclear magnetic resonance (NMR), have
been applied very successfully in solving the 3D structure
of so far roughly 1,000 proteins. Unfortunately, these meth-
ods cannot always be employed to yield the desired infor-
mation, owing to some inherent limitations still present. In
particular, large-sized proteins (M, >100,000), while be-
ing for various reasons often difficult to crystallize, are
well beyond the capabilities of today’s most advanced
NMR methods, which now have an upper limit of around
M; 30,000.

In the absence of high-resolution data, useful informa-
tion on the size and shape of a protein in solution can be
gained from hydrodynamic characterization. This involves
the determination of some parameters which are size- and
shape-related, such as the translational and rotational fric-
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tional coefficients and the intrinsic viscosity, utilizing
well-established techniques such as, for example, sedimen-
tation velocity, fluorescence anisotropy decay, dynamic
light scattering, dielectric relaxation, electric and flow
birefringence and NMR (Cantor and Schimmel 1980b;
Marshall 1978). Additional structural parameters, such as
the radius of gyration, can be obtained by employing var-
ious elastic radiation scattering techniques, from Rayleigh
light scattering to small-angle neutron or X-ray scattering
(Cantor and Schimmel 1980b; Marshall 1978). Traditional
modelling involves comparing the measured values of the
hydrodynamic parameters with those that can be calculated
for a simple geometrical solid body of appropriate dimen-
sions, such as a sphere, a cylinder or an ellipsoid of revo-
lution (Cantor and Schimmel 1980b; Marshall 1978). How-
ever, these procedures yield a rather approximate picture
of the protein, which is often of little value. The situation
has been improved by the development of the hydrody-
namic theory for general tri-axial ellipsoids (see Harding
1989; Harding 1997), but multi-subunit or highly irregu-
lar shapes are still difficult to model with this approach. A
more advanced method, first introduced in the biopolymers
field by V. Bloomfield and collaborators (Bloomfield et al.
1967a, b), and subsequently expanded and improved by
the same authors and by a number of other workers (see
for example Garcia de la Torre and Bloomfield 1977a, b, c;
Garcia de la Torre and Bloomfield 1978; Wegener 1981;
Garcia de la Torre and Rodes 1983; Goldstein 1985; the
reviews by Garcia de la Torre and Bloomfield 1981; Garcfa
de la Torre 1989), consists of modelling the macromole-
cule as a set of spheres (beads) of various diameters in an
appropriate spatial arrangement, of which the hydrody-
namic and structural parameters can be computed and com-
pared with the measured ones. This permits a much more
accurate description of the shape of a protein, and when
pushed to its limits, by “coating” the surface of small pro-
teins of known 3D-structure with many atom-sized beads,
has been shown to be able to reproduce quite satisfactor-
ily the values of their measured translational diffusion co-
efficients (Teller et al. 1979). Later, the influence of tigthly
bound water molecules on the calculated parameters for
both the translational and rotational diffusion of lysozyme
and ribonuclease has been studied with this method, with
very encouraging results (Venable and Pastor 1988). An-
other area of intense work is the application of this proce-
dure to the study of segmentally flexible macromolecules
(Harvey 1979; Wegener et al. 1980; Wegener 1982 a; Har-
vey et al. 1983; Mellado et al. 1988), which will allow a
more accurate description of many real life proteins, such
as antibodies or myosin (Yguerabide et al. 1970; Wegener
1982b; Iniesta et al. 1988). In addition, as sizeable body
of large-size, mainly extracellular proteins, are “modular”,
e.g. they are made up by multiple copies of the same or
different basic structural units (“domains” or “modules”,
see Doolittle 1995; Bork et al 1996; and references therein),
whose relatively small size renders them amenable to high-
resolution studies. Modelling the single structural units in
modular proteins with beads could provide a powerful
method for studying their overall 3D conformation.

Although this modelling procedure is very versatile and
conceptually simple, it has not yet gained widespread ap-
plication, for two main reasons: it requires the writing of
non-trivial computer software for the computation of the
hydrodynamic properties of the ensembles of beads, and a
series of often non-straightforward decisions have to be
made regarding the number, the dimensions and the spa-
tial positions of the beads to be used in the modelling. The
first hurdle has been at least partially removed by the re-
cent appearance of a freeware version of the computer code
written by the group led by one of the most active theore-
ticians in the field, Jos¢ Garcia de la Torre, namely the
“HYDRO” routines package (Garcia de la Torre et al.
1994). HYDRO is a suite of FORTRAN routines for the
calculation of the hydrodynamic properties of rigid mac-
romolecules in solution, which requires as input the num-
ber, coordinates and radii of the beads in the model, and
calculates a number of hydrodynamic parameters (and the
radius of gyration) of the bead model, via direct inversion
of the coefficient “supermatrix”. The authors also suggest
how HYDRO could be used for the computation of the
properties of flexible macromolecules, but additional de-
dicated routines must be provided by the user.

By comparison, BEAMS has been designed from the
very beginning (Ruggiero et al. 1990) as a more compre-
hensive and flexible software package, which can be used
in every step of the bead modelling procedure, from the
choice of the number and dimensions of the beads, to the
building of models (either with a pre-defined spatial ar-
rangement or with random chain-generation), to the visu-
alization of the models on a computer screen and their plot-
ting; the computation of the hydrodynamic and conforma-
tional parameters for rigid models is done via four alter-
native methods, and via two complementary methods for
segmentally flexible models composed ot two subunits. A
comprehensive description of the main BEAMS programs,
as well as of two important ancillary programs, and a brief
introduction to the ASA and TRANS programs which are
being developed for the generation of bead models start-
ing from atomic coordinates, are presented here.

2. Theory

The hydrodynamic theory of the frictional properties of
rigid ensembles of beads was developed by a number of
workers and has been fully described in many excellent re-
views (see for example Garcia de la Torre and Bloomfield
1981; Garcia de la Torre 1989); for this reason we will re-
port here only a brief summary and some of the relevant
equations that we have utilized in our programs. For a full
description of an alternative treatment which has also been
implemented in BEAMS, the variational treatment, the
reader is referred to the original work by Goldstein (1985).

The hydrodynamics of segmentally flexible ensembles
of beads has also received much attention from theoreti-
cians,but the issue is more complicated and far from being
resolved. In particular, two approaches, the “rigid body”



and the “Harvey-Wegener” treatments, have been devel-
oped, and are somewhat complementary. They are both
summarized in a recent very useful review (Garcia de la
Torre, 1994). In our programs, only the case of a segmen-
tally flexible model with two subunits has been imple-
mented, utilizing both approaches. Again, only a summary
of the relevant equations implemented in our programs will
be given here.

2.1 Rigid ensembles

The translational-rotational dynamics of a rigid particle of
arbitrary shape can be described by a 6 X6 resistance ma-
trix R which, under low-Reynolds-number conditions, di-
rectly relates the three forces and the three torques acting
on the particle to its linear and angular velocities (Happel
and Brenner 1973):

F=Rgy -V (1)
where Fand v are the six-dimensional force and velocity
vectors, respectively.

Usually, Ry, is partitioned in four 3 x 3 blocks contain-
ing the translational, rotational, and roto-translational
coupling frictional tensors Z,, Z¢, . and Z, ., and the trans-
pose of the latter, E(T),c, so Eq. (1) can be rewritten as:

(F )=[Et Eg,c)(“o)
TO EO,C EO,r o
where F and T, are the force and torque vectors, respec-
tively, and ug and @ are the corresponding linear and an-
gular velocities, respectively. The O in the subscripts in-
dicates that the values of the corresponding vectors or ten-
sors are origin-dependent. The coupling frictional tensor
is symmetric only at a particular point called the center of
reaction R, and the distance vector rog relating Zq  t0 Zg
is given by Eq. (9) of Garcia Bernal and Garcfa de la Torre
(1980).

A relation analogous to Eq. (2) can be written for the
diffusion tensors, and a center of diffusion D exists for
which the diffusion coupling tensor D, . is symmetric. The
position of D can be found by substituting =, with D, and
Eo,r With =D  in Eq. (9) of Garcia Bernal and Garcia de
la Torre (1980). The relation between the diffusion matrix
Dg and the resistance matrix Ry is given by the general-
ized Stokes-Einstein equation (Brenner 1967):

2)

Do =ks TRy (3)
where kg is Boltzmann’s constant and T is the absolute
temperature.

For an ensemble of N beads, it is possible to calculate
from Stokes’ law the frictional force exerted on the sol-
vent by each bead. However, the motion of each bead
creates an internal velocity field in the solvent that must
be added to the external one. This “hydrodynamic interac-
tion” can be described by (Garcia de la Torre and Bloom-
field 1977 a):

N
F (6710:)" + X" T Fj=(u; - v{) 4)
j=1
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where 6 71,0, is the frictional coefficient of a sphere of
radius o; in a solvent with viscosity: 17y, F; is the frictional
force exerted on the solvent by the i™ element, u; and v
are respectively the velocity of the i™ element and the ve-
locity of the unperturbed solvent, and the prime on the sum-
mation indicates the exclusion of the terms with i=j. T;; is
the Rotne-Prager-Yamakawa hydrodynamic interaction
tensor as modified by Garcia de la Torre and Bloomfield
(Rotne and Prager 1969; Yamakawa 1970; Garcia de la
Torre and Bloomfield 1977a) for non-overlapping beads
of different size, (5)

R;R; (c}+0?) R;R;;
T~-=(87rn0 R“)_l [+ 80U, J lp_2ut
1 ] Rizj Rizj 3 R%

where R;; and R;; are, respectively, the scalar and the vec-
torial distances between the centers of beads i and j, and I
is the unity tensor.

Equation (4) can be rewritten as (Garcia de la Torre
1989):

N
Y By Fyj=(u;-v)) (6)
j=I
where B;; is a 33 matrix defined as:
I
B;=; 6710, +(1-6;) Ty (N

where §;; is Kronecker’s delta.

Equation (6) represents a system of N linear equations
with 3N unknowns. In particular, by direct inversion of the
“supermatrix” B of dimension 3N x3N, composed of NxN
B;; blocks, one obtains a new “supermatrix” C (Garcia de
la Torre 1989):

Cc=3" (8)

which contains NxN Cij 3x3 blocks, leading to the ele-
ments of the resistance matrix Rg:

E =22XCy 9
LI

EO’C:Z 4 Ui'Cij (10)
T

(I

EOJZ—Z ZUi'Cij'Uj+6T]OVI
i

In Egs. (10)-(11), U; and U; are two matrices whose
elements are the components of the vectors joining the cen-
ter of beads i and j with the origin of the reference system
(Harvey et al. 1983; Garcia de 1a Torre 1989). The last term
on the right-hand side in Eq. (11), 6 ¢V 1, is the “volume”
correction introduced by Garcia de la Torre and Rodes
(1983), where V is the total volume of the beads.

A less precise but less computer-demanding way of
solving Eq. (4), is by Gauss-Seidel iterations. The proce-
dure is described in detail in Garcia de 1a Torre and Bloom-
field (1981), Egs. (7)—(8), (10), (21)—(23), and directly
yields Z,; it utilizes the “shielding tensors” G;, defined by
Eq. (16) of Garcia de la Torre and Bloomfield (1977a),
from which the coupling tensor Zq . ¢an also be obtained
(Eq. (60) in Garcia de la Torre and Bloomfield (1981)).
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From the trace of Et‘l, the translational frictional coef-
ficient f™ can be derived:

£ =3/t (5 (12)

The translational diffusion coefficient D™ at the tem-
perature T and solvent viscosity 1)y, and the correspond-
ing translational Stokes’ radius R§ can be then obtained
from £ as:

(T.no) _ kT
D —W (13)
Ri=f"™/6mn, (14)

To calculate the rotational diffusion coefficients along
the tree principal axes of the model in the presence of roto-
translational coupling, the rotational frictional tensor must
be evaluated at the center of reaction R, Zg ;, from Zg
(Garcia Bernal and Garcia de 1a Torre 1980):

= _% = = =T
ER,:=20,~TORXE(XFor+E( ¢ XFor—ForXEg.  (15)

where the symbol “X” denotes the dyadic product (Garcia
Bernal and Garcia de la Torre 1980).

Eg.; can be also obtained by Gauss-Seidel iterations as
described by Garcia de la Torre and Bloomfield (1981),
utilizing the vectors R/ joining the center of resistance R
to the center of bead i. The “volume” correction (Garcia
de la Torre and Rodes 1983) is also applied here.

The three rotational diffusion coefficients along the
axes x* (k=1, 2, 3), D¥™_and the corresponding rota-
tional Stokes’ radii, RS, are given by:

Dy 1) =k T[EK, ] (16)

— Y3
k =R,
o

Moreover, from the eigenvalues of the rotational diffu-
sion matrix, D,, five rotational relaxation times T} (k=1-5),
and their unweighted harmonic mean T}, can be calculated
in the general case when D; <D, <D; (Wegener et al. 1979):

a7

7" = (6D - 24)™

75" = (3D + 3D
73T = (3D +3D,)™!
T
T

E (18)
Z(Tqun) — (3D + 3D3)_1
1T = (6D +24)"!
-1
Tfl(T"’(’):MZ (Tll(‘(Tsﬂo))-l]/S} (19)
k
where:
D =(1/3) (D,+D,+D3) (20)
A =(D3+D3+D3-D,D,-D,D;-D,D;)? 21

Finally, the intrinsic viscosity [77] is obtained (Garcia
de la Torre and Bloomfield 1978; Garcia de la Torre and
Bloomfield 1981; Garcia de la Torre 1989) from:

_ Na_ 1 o_ oy oo a o
[n]—Mno %%[]SE(X. v CF* (x§ =v%)
1 B B_ B
AT §¢% (T =V €7 0 =vE)
_ o_ayeoB  B_ B
30 gi% (xi =vH) G (x§ —v7)

+ ey xE-v P (x2 v | ( f=1,2,3) (22)
20 Gug N

Here N, is Avogadro’s number, M is the total mass of
the beads, and x¢ and v* are, respectively, the coordinates
of bead i and of the center of viscosity V, defined as the
point where [77] is at a minimum (Garcia de la Torre and
Bloomfield 1978). Thus, V can be found from a system of
three linear equations whose coefficients are combinations
of the C;; and x{' (Garcia de la Torre and Bloomfield 1978),
the first of which is:

v Z Z 8CY +6C{iy +6CH)
i

ij

+v' Yy (ny+Ciyj")+V"22 (Ci* +Cf)
i i

=3 2 [(xf+x})(4CF +3CY +3CF)
e 20 +xE3CE- 20y

+xiy(3C;}y—2Ciyj")+xiz(3Cf}z—2Ci’jx)} (23)

The other two equations are obtained by cyclic permu-
tation of (x, y, z).

Recently, Garcia de la Torre (1989) has advocated the
general use in bead modelling procedures of a “viscosity”
correction in the computation of [77] similar to the “vol-
ume” correction included in Eq. (11) for the rotational fric-
tional coefficients. It consists in adding to the right-hand
side of Eq. (22) a term corresponding to the intrinsic
viscosity that would be exhibited by a sphere having the a
volume V and a mass M respectively equal to the total vol-
ume and total mass of the beads:

5NAV
2M

(" =[n]+ 24

However, a numerical computation study utilizing
shell-models of prolate ellipsoids of revolution that we
have conducted (Spotorno et al., submitted), has cast some
doubts on the validity of this correction for rigid ensem-
bles of beads. Therefore, the two [77] values (uncorrected
and corrected) are separately reported.

By analogy with the Stokes’ radii for translational and
rotational diffusion (Egs. (14) and (17)), it is possible to
calculate from [77] the so-called Einstein radius R as:

1

| 3Mlinl P (25)
BES [ 10m N4 J

We end this section by recalling that a conformational

property, the rms radius of gyration R, can be easily com-

puted from the beads’ masses m;, and the distances r; from



the coordinates of the center of mass of the ensemble of
beads:

Z m; 1f

Ry=-tc——
g 3 m,
1

(26)

2.2 Segmentally flexible ensembles with two “subunits”
2.2.1 Harvey-Wegener treatment

The formalism of Harvey has been fully developed for the
particular case of a segmentally flexible model composed
of two independent subunits (Harvey et al. 1983; Mellado
et al. 1988), and is the one that we have implemented in our
programs. Such a model, in which the “joint” between the
subunits can either act as a “hinge” (only bending, no tor-
sions) or as a “swivel” (bending and torsions, see Fig.1 of
Harvey et al. 1983), has a maximum of nine degrees of free-
dom, three for instantaneous overall translation, three for
instantaneous overall rotations and three for the instanta-
neous internal bending and torsions. Harvey et al. (1983)
used three coordinates for the overall translation, three for
the overall rotations, and used an angle « for the bending
between the subunits, and two angles 3, and f3, for the tor-
sions between the subunits. For each subunit, the principal
axis passing from the center of the swivel is defined, and
two unit vectors, I, and i,, are associated with these axes.
The model is pre-oriented so that 7, and i, define the xy
plane, and the bending between the subunits described by
a, e.g. between i, and 7,, takes place in that plane. Two non-
independent parameters, a; and a,, define the proportion
of the angular velocity dot/dt associated with each subunit:

do
w;l) = wz + a Z (27)
(l);D:(OZ—aQ 7(1‘1 (28)
a+ay=1 (29)

where @, is the component along the z-axis of the angular
velocity of the whole ensemble and o'V and @ those of
the two subunits.

The advantages of this notation, such as the choice of
where to fix the molecular coordinate system through the
parameter ag,, and the relative equations, are fully de-
scribed by Harvey et al. (1983), and will not be repeated here.

Following Harvey et al. (1983), we will now recall that,
by analogy with the case of rigid ensembles, it is possible

to generalize Stokes’ law:

FO = _RO : uO (30)

where F and ug, are, respectively, the nine vector gener-
alized force and velocity, and Ry is the 9 X9 resistance ten-
sor which can be again partitioned into 3 x3 submatrices:

= =T =T
—tt —Q,tr =0.t
= = =T

Ro=|Z0r Zor Eo0. (€2
204 S0 S0,
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Here a slightly different notation from that used for rigid
ensembles has been used in the subscripts to indicate the
coordinates associated with each tensor, in which “t” stands
for translation, “r” for rotation, and “i”’ for the three inter-
nal coordinates of bending and torsions (*“tt” indicate pure
translation, “tr” translation-rotation coupling, and so on).
To obtain the 9x9 diffusion tensor Dy, the generalized
Stokes-Einstein relation (Eq. (3)) can be applied again.

Ry, is obtained as we have seen for rigid ensembles, and
in this way the hydrodynamic interaction between elements
on different subunits can be taken into account. The ex-
pressions utilized for the computation of the various 3x3
blocks from the S;; obtained from the Qj;; defined in Egs.
(7)—(8) of Garcia de la Torre and Bloomfield (1981) by the
direct inversion of the coefficient “supermatrix”, are Egs.
(27)—(32) of Harvey et al. (1983), with the addition of the
“volume” correction as reported in Mellado et al. (1988).
Instead of the Q;; and S;;, the B;; and C;; defined in Egs.
(6)—(11) can be used advantageously (Mellado et al. 1988;
Garcia de la Torre 1989), but this later innovation has not
yet been introduced in our programs.

It is important to stress that the parameters obtained are
instantaneous values for any given conformation, and are
valid if the origin is set at the joint between the two sub-
units (Harvey et al. 1983). Once the diffusion tensor Dg is
obtained from R, the instantaneous translational diffu-
sion coefficient D{T™ () for a segmentally flexible mac-
romolecule with two subunits could be calculated. How-
ever, the correct point where D{"™(¢) must be evaluated
is at the center of diffusion. Wegener (1985) has shown
that an excellent approximation to the “true” center of dif-
fusion of a segmentally flexible body is the instantaneous
center of diffusion, which is found by applying a relation
similar to Eq. (9) of Garcia Bernal and Garcia de la Torre
(1980). A transformation relation from D, and Dy, is ap-
plied (see Harvey et al. 1983), and D{"™ () is then ob-
tained:

D" (a) = 5tr (Dp ) >

The origin-independent instantaneous values for the
three rotational diffusion coefficients for overall rigid ro-
tations can also be extracted from D¢, (see Eq. (8) of Mel-
lado et al. 1988) if the parameter ay, is properly set. How-
ever, some experimental techniques, such as fluorescence
anisotropy decay, can yield the rotational relaxation times
for the reorientation of one subunit with respect to the other.
In the formalism proposed by Wegener (1982a, b), which
uses different rotational coordinates, such relaxation times
can be easily calculated. According to Wegener, individ-
ual torsions of the subunits around their principal axes con-
stitute the first two rotations, D{©, where k=1, 2 indicate
the subunits, D{* describes the end-over-end rotations of
each subunit within the xy plane, and DY), is for out-of-
plane rotations around the perpendicular z-axis. The trans-
formation relations from Harvey’s to Wegener’s coordi-
nate systems (Harvey et al. 1983) can be derived from Egs.
(9a)—(9c¢) of Mellado et al. (1988).

The average properties of segmentally flexible ensem-
bles are then obtained by integration of the instantaneous
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values weighted by an appropriate probability distribution
function. For instance, for R, we have:

Ry= | Ry(a)p(a)da

Qi

(33)

and analogous relations apply for D{T™), D{I DR,
Dk pk
out» mn-* . N .
For the more general case of unrestricted motions with
nine degrees of freedom, the spherical probability distri-
bution function of the angle described by the subunits is

proportional to sin (&) (Harvey et al. 1983), leading to:

sin(Q) sin(a)

Tax sin () dot - COS(Opyin ) — COS (X pax )

Cin

pla)= (34

Finally, from Wegener’s coefficients five rotational re-
laxation times for each subunit can be extracted in the more
general case (Wegener et al. 1980), which reduce to three
for axially symmetric ensembles (Wegener 1982a; Mel-
lado et al. 1988):

iV =(6D +24)"
s =3D+ D)

73V =3D+ D)) (35)
73" =3D+ D))
73V =(6D-24)"
where:
D=(1/3)(D{,+ D\ + D) (36)
A=[(Du)*+ (D) +(DP)*

- D D - D DY - D DY @)

2.2.2 Rigid body approximation

As first pointed out by Mellado et al. (1988), the Harvey-
Wegener treatment is completely valid only for freely
jointed subunits (e.g. when the joints act as swivels), and
even its applicability to hinged segments has been recently
questioned (Garcia de la Torre 1994). Instead, in the most
realistic case a “restoring force” opposing the bending can
be present (Harvey et al. 1983; Mellado et al. 1988; Iniesta
et al. 1988; Garcia de 1a Torre 1994). For these reasons, In-
iesta et al. (1988) suggested that treating each instantane-
ous conformation in a semiflexible model as being rigid
and then averaging with proper weighting would be a rea-
sonable approximation, especially for properties which are
expressions of overall motions such as the translational dif-
fusion coefficient and the intrinsic viscosity.

As pointed out by Harvey et al. (1983), in the case of
bending restrained by an harmonic potential limited by a
constant restoring force, the probability distribution func-
tion should include an exponential term depending on
a?/kgT. Using the same form as in Eq. (6) of Iniesta et al.
(1988), if the torsions of the two subunits are opposed by

identical linear restoring torques we have:
Vilkg T =Q.(Bi+Bo)’ (38)

where V is the harmonic potential and Q is the elastic con-
stant.

For a swivel-jointed model with two subunits in the
presence of a linear restoring force opposing the bending,
but in the absence of linear torques opposing the torsions
of the subunits, Eq. (34) becomes:

; -Qa?)
sin(o) e
pla)=4— (@)
max 2
| sin(e)e2*) dea
A ipin

(39

In the most general case, for aswivel-jointed model with
two subunits in the presence of a linear restoring force and
linear torques, we have:

pla) = 7 2
sin (o) e2%) QB+ B)T) “0)

Bimax) Bamax) )
J‘ e(-—Q‘(ﬁl*'ﬂz) )dﬁ1dﬁ2
,Bl (min) ﬂ2(mm)

The factor sin(¢r) is removed in both Eqs. (39) and (40)
for a hinged model.

The computation of the hydrodynamic and conforma-
tional parameters for segmentally flexible bead models in
the rigid-body approximation is then carried out for each
conformation with the formalism seen for completely rigid
models, and then the averaging of each property is carried
out as is done in Eq. (33) for R, with the proper weighting
factor and probability distribution function.

amax . 2
| sin(a)e™9* ) da
aln‘ﬂ

3. Materials and methods

BEAMS was originally developed on a HP9000 series 300
microcomputer equipped with an MC68040 processor,
MC68882 numerical coprocessor, and 8 Mb RAM. The
programming language chosen was C++, for its greater
flexibility, including graphic capabilities, compared to
FORTRAN. The programs have since been successfully
recompiled on various other platforms, including a PC with
a Pentium 75 MHz processor and 16 Mb RAM, a DEC
System 5100 with 16 Mb RAM, a Sun SPARCstation 10
with 32 Mb RAM, and a Silicon Graphics Indy with 32 Mb
RAM.

The ancillary programs PROMOLP (PROtein MOLec-
ular Parameters) and GRUMB (GRaphical Utilities for
Modelling with Beads) were developed on various PC
computers from the 386 to the 486 series. PROMOLP and
GRUMB are written and compiled in VisualBasic for Win-
dows™ and C++ for MS-DOS™, respectively.

PROMOLP stores, retrieves and analyzes a protein se-
quence, either entered manually or converted from the
SWISSPROT data bank format (see Rodriguez-Tomé et al.
1996), including information about number and position
of free -SH groups, phospho-serines, -threonines and



-tyrosines, and N- and O-linked carbohydrate chains, to
yield the following physico-chemical parameters: a) mo-
lecular weight of the amino acids included in the sequence;
b) molecular weight of the carbohydrate chains; ¢) global
molecular weight (amino acids plus carbohydrates plus
eventual phospho-groups); d) partial specific volume of
the amino acids only; e) global partial specific volume; f)
theoretical hydration due only to the amino acids; g) glo-
bal theoretical hydration; h) unhydrated molecular volume
and radius of the equivalent sphere; i) hydrated molecular
volume and radius of the equivalent sphere; j) theoretical
extinction coefficient at 280 nm; k) average hydrophobic-
ity [H(¢)]; D) R3 ratio (see Cantor and Schimmel 1980a);
m) discriminant function Z (see Cantor and Schimmel
1980a); n) isoelectric point.

The program also calculates and displays in a table the
net charge of the ionizable groups (amino acids plus car-
bohydrates) and the net total charge, for each unit of pH
from pH 4 to 12. It is also possible to analyze only parts
of the sequence. A full description of PROMOLP will be
reported elsewhere (Rocco et al., manuscript in prepara-
tion).

With GRUMB, every step in the geometric building of
a bead model is facilitated. Beads or blocks of beads can
be added or removed, translated along an axis, rotated
along an axis (either by a user-determined amount, or un-
til contact is made with another bead), their properties (ra-
dius, mass and “colour”) can be modified and symmetries
can be generated. Spatial analyses can be performed be-
tween the beads (overlap test, top-down distance, distance
between centers and surfaces of selected beads), and the
entire structure can also be automatically rotated in order
to have two chosen beads “aligned” on an axis, or it can
be “normalized” (e.g., it can be aligned by a principal axis
transformation (PAT) routine (Goldstein 1950) so as to
have the maximum dimension along the x-axis, and the
minimum dimension along the z-axis). Various visualiza-
tion modes are present: orthogonal projection (2D), three-
dimensional incoherent vision, and prospectic vision; the
model can be represented by segments connecting the cen-
ters of the beads, by empty circles, or by filled circles (six-
teen colours are currently available). As this program was
conceived for model building only, no high-resolution
three-dimensional “shading” modes are present, nor are
graphical outputs to plotters or laser printers. The x, y and
z coordinates of the beads are saved as three columns of n
rows in a file which contains on the first line the number
n of beads used, and a second number which is the radius
of the beads if all the beads have the same radius, or is set
to “0” and used as a “flag” if the beads have different ra-
dii; in this case, it is followed by the filename of another
file which contains in three columns of n rows the radius,
the mass, and anumber specifying the “colour” of the beads
(“rme” file). In this way, multiple conformations of the
same ensemble of beads can be generated without having
to unnecessarily duplicate common information each time.
This file structure is utilized by all the BEAMS programs.

As can be seen in Fig. 1, BEAMS is structured so as to
have a main routine from which the various subprograms
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can be called. The five subprograms are GRAPH, COEFF,
FLEX, SUPFLEX and STRINGS.

GRAPH is a graphical utility, with limited model ma-
nipulation capabilities, the most notable of which is that
the model can be “preconditioned” for segmental flexibil-
ity studies with two subunits (practically speaking, it is
aligned along the x-axis, and the 0,0,0 coordinates are
placed wher the hinge or swivel is placed by the user). The
models can be visualized either as segments connecting the
centers of the beads, as coloured disks or as spheres in ei-
ther low- or high-resolution, the latter only in black and
white. To visualize the models in the disks or spheres-
modes, GRAPH utilizes the “Starbase” graphical routines
package from Hewlett-Packard on our HP900O platform
(where it is set up for either an HP-98789A or an HP-
98754 A high-resolution colour monitor), but it has already
been adapted for use on a PC. On the HP9000, GRAPH is
fully interfaced to a HP-7550A 8-colour plotter through
another self-standing program, PLOT. On plotting, the
beads are represented as circles, but no shadowing or fill-
ing is actually implemented. Among other plotting features
are: a) the size (A4 or A3) and orientation (vertical or
horizontal) of the paper can be chosen; b) more than one
file can be plotted on the same sheet, conserving the same
scale: ¢) the location in the sheet where each file is to be

INPUT: -
N. and radius of beads Interactive
From PDB "stiffness"” of the chain modification
files points of segmental F
ASA, TRANS) flexibility
Y
y y GRAPH
FROM FILE: AUTOMATIC: High-res. video
coordinates of STRINGS graphical output
the beads random generation
center of dihedral and A
1 torsional angles ]
4 PLOT
PROMOLP, 8 colors
GRUMB Yy Y plotter
No high-res 3D
informations BEAMS
/ Main \
COEFF SEGMENTALLY
/ RIGID MODELS FLEXIBLE MODELS
GOLD SUPC ‘
Variational Supermatrix FLEX
treatment inversion Harvey-Wegener
treatment
GS DIAG ;
Gauss-Seidel | | GS with diagonal SUPFLEX
iteractions approximation Garcia de la Torre
treatment
y Y Y Y ‘ A A

PRINCIPAL PARAMETERS OUTPUT:
Translational frictional and diffusion coefficient, Stokes' Radius;
Rotational frictional and diffusion coefficients; Rotational Stokes' Radii,
Rotational relaxation times; Intrinsic viscosity; Radius of gyration.

Fig. 1 Flow chart of the BEAMS package. Program names are
in bold
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plotted can be chosen (either in the center, in the upper/
lower half, in one of four quadrants, or to manually enter
the coordinates); d) for the whole plot, a scaling factor can
be chosen; e) the speed of drawing can be varied, as well
as the amount of “overlap” between contiguous beads; f)
plotting the same files on up to 10 sheets is another option.

COEEFF calls one of four programs, SUPC, GS, DIAG
and GOLD, which compute the hydrodynamic and confor-
mational parameters for rigid ensembles of beads. The
main features common to all the COEFF subprograms are:
a) they can process up to 100 files, either by entering the
names one-by-one or as sequential files (common prefix +
sequential number); b) the standard units in input for radii
and coordinates are in nanometers (and so are the outputs
such as the Stokes’ radius). Therefore, there is a conver-
sion feature that lets the user use any units as input units;
c) choice of computation of hydrodynamic parameters at
the Cartesian origin or at the diffusion center; d) choice be-
tween stick and slip boundary conditions; e) choice of the
first and last bead to be included (allows the computation
of the parameters of parts of models); f) the models are
automatically “normalized” by a PAT routine (this is man-
datory for the correct computation of the rotational diffu-
sion coefficients); g) output of all the parameters is for stan-
dard conditions, e.g. water at 20°C. The parameters calcu-
lated by the four methods and their units are reported in
Table 1; h) in the case of multiple files, mean values and
standard deviations of all the parameters are also com-
puted; 1) the “flag” in the coordinates’ file can be used for
two additional options: if set to “~17, the radii of the un-
hydrated beads must also be present in the “rmc” file, and
are used for the computation of R,; if the “flag” is set to
“-27, the value of the partial specific volume V, must be
present after the “rmc’ filename, and is used to calculate
the sedimentation coefficient s{?°** via the Svedberg
equation (see pp.605—-607 of Cantor and Schimmel 1980b);
if the “flag” is set to “~3”, both options are active.

In addition, some extra features are present only in
SUPC: j) the volumetric correction for the computation of
the rotational diffusion coefficients, and the mass of the
model can be also entered manually (in GS, DIAG and
GOLD, the total volume and the total mass are taken only
from file as the sums of the volumes and of the masses of
all the beads, respectively); k) a “colour filter” is provided.
If selected, all the beads having a certain colour associated
are excluded from the hydrodynamic computations (but not
in the calculation of the radius of gyration). For instance,
this is very useful when checking for the effects on the
overall hydrodynamic parameters of “buried” beads in
compact models.

Among the four methods, SUPC is the most precise and
most computationally demanding. It calculates the forces
by the direct inversion of the coefficient “supermatrix” B
(Egs. (6)—(8)), which is done by Cholesky decomposition
(see pp. 96—98 of Press et al. 1992). Then the Z,, Z, ; and
Zo.. matrices are calculated (Egs. (9)—(11)) and the vec-
tor ro g is evaluated from Eq. (9) of Garcia Bernal and
Garcia de la Torre (1980). Next Z . is obtained from Eg.
(15), and the diffusion matrix Dg, is obtained from Eq. (3).

Table 1 Parameters caiculated by the COEFF sub-programs, and
their units

Parameter® Units SUPC GS, DIAG

and GOLD
Molecular weight g mol™ + +
Total volume nm’ + +
Surface area nm + -
Rg nm + +
£ gs™! + +
D(zo W) em? s~ + +
S nm + +
sg2 0w S0Py o+ +
£1) (3x) gem®s™ + +
Drk(Z()“,W) (3x) g7 + +
R&F (3x%) nm + +
£ gem?s™! + +
D(zu W) ¢! + +
r(2() W) (5)() ns + +
Tr(2[)° w) ns + +
cmj g"; + —
[ ]A,orr cm?® g~ + _
[n] (DS) em’ g + +
[n] (Tsuda CM) cm? g - + +
[n] (Tsuda CV) cm’ g -1 + -
nm + +
CR (x, ¥, 2) nm + +
CD (x,y, 2) nm + +
CM (x, ¥, 2) nm + +
CV(x,y,2) nm + -
Max. Ext. (x, y, 2) nm + +
Axial ratios x:y & x:z / + +

 Symbols and abbreviations: ), D™ and RY, translational
frictional coefficient, diffusion coefficient and Stokes’ radius, re-
gectlvelyi W sedlmentatklkkjlnklnkl}nnkkl ion coefficient;
(w) pro W and REX, rotational frictional coefficient, diffusion
cocfflcxcnt and Stokes’ radii along the k (=x, y, z) axes, respective-
ly; £ and D9"%), “global” rotational frictional and dlffusmn co-
efficients (mean ofthe individual values), respectively; T five
rotational relaxation times; 7, 0% W) yunweighted harmomc mean of
the five rotational relaxation times; In] and [n]°°", intrinsic viscos-
ity uncorrected and corrected, respectively; DS, double-sum; Rg,
Einstein’s radius (calculated for all the [n] values); CR, CD, CM,
and CV, centers of resistance, diffusion, mass and viscosity, respec-
tively; Max. Ext., maximum extension along the individual axes. The
superscripts (20°,w) and (w) indicate that the parameter is calculat-
ed at 20°C and for the viscosity of water at 20°C, or only for the lat-
ter, respectively

The various parameters are calculated from Eqgs. (12)—(14)
and (16)—(21), the centre of viscosity is evaluated from the
system of equations defined by Eq. (23), and [n] is ob-
tained from Eq. (22). Two less precise methods for obtain-
ing [7], the double-sum (Garcia de 1a Torre et al. 1983; see
Eq. (30) in Garcia de la Torre 1989) and the method of Tsuda
(1970), are also implemented for comparison purposes.
GS utilizes an iterative approach, namely the well-
known procedure of Gauss-Seidel (see Theory section), to
get the forces from the coefficient “supermatrix”, while
DIAG utilizes the same method but with the diagonal ap-
proximation, e.g. it neglects the off-diagonal components
of the hydrodynamic interaction tensor (Garcia de la Torre
and Bloomfield 1977a). The various parameters are then
calculated as above except for [h], which in GS, DIAG and
GOLD is calculated at the center of mass via the double-



sum and Tsuda’s methods (see above). The last subpro-
gram, GOLD, is based on the variational method of Gold-
stein (1985), and the Cholesky method is again used to
invert the “supermatrix”.

The hydrodynamics of segmentally flexible ensembles
of beads with two subunits with just one hinge or swivel
point are computed by FLEX. FLEX uses the Harvey-
Wegener treatment, hence all the caveats pointed out by
Garcia de la Torre (1994) apply. Its main applications,
beside the generation of the sequentially flexed models, is
in the calculation of the rotational relaxation times for each
subunit, for comparison with those that can be derived from
fluorescence anisotropy decay or electron spin resonance
experiments when the fluorophore or spin label is present
on only one subunit. The main features of FLEX are: a)
choice between 7, 8 or 9 degrees of freedom (7 = bending,
8 = bending plus one torsion, 9 = bending plus two tor-
sions; no restoring forces on bending and/or torsion are
allowed, since they are outside the Harvey-Wegener treat-
ment); b) inclusion or exclusion of hydrodynamic inter-
actions between subunits during bending and/or torsion;
¢) choice of axis and direction of bending (x+, x—, y+, y-);
d) setting between 0 and 1 of a, (Egs. (27)-(29)); ) user-
selectable initial and final angle, and bending step; f) user-
selectable ratio between bending and torsion(s); g) inclu-
sion or exclusion of the volume correction; h) choice be-
tween diffusion or origin as the center to which all the com-
putations are referred to; i) computed parameters: transla-
tional frictional and diffusion coefficient, translational
Stokes’ radius, radius of gyration, five rotational relaxation
times for each subunit, diagonal components of the rota-
tional diffusion matrix (D44D55Dgg).

The models need to be pre-aligned, for instance with
the option present in GRAPH, before being passed to
FLEX. After entering the starting and ending angles for
bending and the relative torsional angles, the step angle
and the direction of bending, the part of the model which
is to remain fixed on the x-axis through the parameter a,
(Egs. (27)-(29)) must be defined. FLEX will then begin to
generate the successive conformations for which it will
compute the instantaneous hydrodynamic parameters as
described in the Theory section. These conformations can
be also saved in sequential files to be analyzed later with
the rigid-body approximation, if wanted. The forces
and torques are obtained by the direct inversion of the coef-
ficient “supermatrix” utilizing the LU decomposition
method with Crout’s algorithm employed to find the lower
and upper triangular matrices (see pp. 43-50 of Press et al.
1992). The instantaneous center of diffusion Dy, is deter-
mined from D¢, as described by Harvey et al. (1983), and
the evaluation of the matrix W (Eq. (9) of Harvey et al.
1983) is done by approximating the partial derivatives with
finite differentials. Then D{T(qy) is obtained from Eq.
(32), and Wegener’s coefficients are calculated. The inte-
gration of the instantaneous values (Eq. (33)) with the
proper probability distribution function (Eq. (34)) is done
by either the rectangles or the Cavalieri-Simpson methods.
Equations (35)-(37) are then applied to get the rotational
relaxation times of each subunit.
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The sequential files generated by FLEX can also be en-
tered in another program, SUPFLEX, which calculates the
hydrodynamic parameters for segmentally flexible models
using the rigid-body approximation. The parameters are
calculated for each sequential model using the same algo-
rithms of SUPC, but at the end they are averaged accord-
ing to the probability distribution functions. In absence of
restoring forces, the average is done as seen for FLEX. We
have already also implemented the case in which there is
a linear restoring force opposing the bending but no linear
torques opposing the torsions of the subunits. The prob-
ability distribution function is described by Eq. (39), in
which the integral is approximated by the Cavalieri-Simp-
son method. The numerical values of p(«) for each value
of o are then entered into the averaging functions for each
parameter, whose integrals are again approximated by the
Cavalieri-Simpson method.

The fifth BEAMS program, STRINGS, was the first
program we actually developed. Its original core was de-
rived from a FORTRAN program written by J. Hermans
and M. Carson (Rocco et al. 1983) for the random gener-
ation of strings-of-beads of equal size and the computation
of their translational frictional coefficient, but it has
evolved into a much more powerful “generator” of bead
models. The main features of STRINGS are: a) it accepts
as input a file with beads coordinates (the same kind as the
ones described above for GRUMB) for quick calculation
of R§ (by Gauss-Seidel iterations with the diagonal approx-
imation), R,, and the end-to-end distance hy; it can also
produce a list of the distances between the centers and the
surfaces of specified beads; b) alternatively, it accepts as
input only the “rmc” file and generates at random a num-
ber of conformations (up to 200), and calculates the same
parameters for each conformation. Conformations in
which beads overlap are rejected (and not counted), and at
the end the program gives the mean values and standard
deviations of Rg, R, and hy. The randomness is achieved
by random generation of the “bond” angles (between the
lines connecting the centers of three successive beads) and
the “dihedral” angles (defining the “rotation” on one bead
with respect to the preceeding one around the line connect-
ing their centers), and then calculating the coordinates of
the beads. The degree of “compactness” (or “rigidity”, so
to speak) of the chain is controlled by a user-defined pa-
rameter k which works by restraining the “bond” angles
from moving from the “rest” value of 180°, utilizing a har-
monic potential in a Boltzmann distribution, e.g. for high
k all the “bond” angles are 180° and the beads are all
aligned, for low k all the angles which do not lead to bead
overlap are accessible (for more details, see Rocco et al.
1983). “Dihedral” angles can always freely assume any
value between 0° and 360°; ¢) the coordinates of every
model or selected models generated (with no overlaps) can
be automatically saved in a file for better analysis by the
COEFF programs; d) the program can generate the model
as a continuous chain (string-of-beads) or introduce
branches of any length at selected points (more than one
chain is allowed at any branch point); ) the user can se-
lect only part of the beads’ coordinates to be generated at
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random, by providing a file with the “bond” and “dihedral”
angles of the part(s) to be kept fixed. An ancillary program,
ANGLES, calculates the angles from a previous bead
model and stores them in a file. Again, the beads need not
to be on astring, e.g., there can be “side chains”. STRINGS
can also directly save in a file the angles for each model it
randomly generates; f) the user can select different k val-
ues for different parts of the chain, achieving different de-
grees of “compactness” for different parts of the chain; in
this case, the k values need to be in another separate file;
g) looped branches can be generated between any two
points in the chain.

4. Results and discussion

The first problem in the bead modelling procedure is the
definition of the number and size of the beads to be used.
There are two main possibilities: presence or absence of
high-resolution data (e.g. 3D-coordinates). Even if 3D-
coordinates are available, the problem is not trivial, and a
brief mention of a series of programs under development
in our laboratory to tackle this problem will be made at the
end of this section.

In the absence of high-resolution data, one needs to de-
fine each segment of the protein that has to be represented
by a bead with a defined radius. The program PROMOLP
is very useful for defining the number and size of beads
starting from information generated by electron micros-
copy, differential scanning calorimetry, proteolytic diges-
tion studies, or according to modular arrangement as re-

vealed by sequence alignment, or gene duplication as in-
dicated by intron/exon boundaries. One chooses parts of
the sequence according to the information available and
with the visual help of additional information, if present,
displayed with the sequence (proteolytic cleavage sites, in-
tron/exon boundaries), one obtains the volume, and thus
the radius, of the corresponding bead, plus data about the
net charge and hydrophobicity of that bead. In this way,
there’s a direct relationship between sequence and beads,
allowing for interacting parts of a molecule to be placed
close in space in bead models. Most importantly, the “hy-
dration problem” is addressed in a “statistical” manner, by
including in each bead the theoretically bound water of
hydration calculated according to Kuntz and Kauzmann
(1974).

The second problem in bead modelling procedures in
the definition of the spatial position of the beads. Still in
the absence of high-resolution data, two main options
are possible, depending on the availability of independent
information about the overall shape of the protein to be
modelled: random generation or “manual” definition of
the Cartesian coordinates of the beads. The programs
STRINGS and GRUMB provide the user with a full spec-
trum of options that cover both possibilities and their com-
bination.

Having defined number, size; and the spatial position
of the beads, the next step is the.computation of their so-
lution parameters. BEAMS offers four options for “rigid”
models and two for “segmentally flexible” models (see
Fig. 1). The “rigid” models options are grouped under the
COEFF sub-main, and can be chosen as a function of the
number of the beads used, the precision needed, and the

Table 2 Performances of

SUPC, GS and DIAG on vari- Method HP 9000 PC-Pentium DEC 5100 Sun SPARC Silicon IRIX
latf N
ous pratiorms Elapsed time for N =300

DIAG 50" 02" 22 149”7 49” 30”

GS 1h 00" 107 17 05” 3’ 56” 1177 50”

SUPC 6h 24" 45”7 2745”7 39°00” 17°01” 5" 45"
Elapsed time for N =400

DIAG 1h 54’ 09” 38”7 3'26” 17277 54"

GS 2h 197 39" 2'31” 7’ 56” 247" 139”7

SUPC / 6" 29”7 1h 37 13" 39’ 52”7 14’ 00”
Elapsed time for N =500

DIAG 3h 15" 45" 1 00” 7' 53”7 2"39” 1"41”

GS 3h 27 04" 3" 33” 11" 08" 420" 2’ 58”

SUPC / / 3h 1411”7 1h 1739 287 03”
Elapsed time for N =800

DIAG / / 4h 11’31” 8’ 22" 6" 06”

GS / / 4h 51" 44" 15" 15" 10" 47"

SUpPC / / 13h57718” 5h33 21" 2h 107077
Elapsed time for N = 1000

DIAG / / 7h 17 18" / 5h 14" 46"

GS / / 7h 31" 25" 6h 24" 56” 4h 47 25”7

SUPC / / / / /

% Single run tests: times reported are only indicative



time required for the computation. In Table 2, the speed of
execution for three of the four COEFF programs is reported
for various platforms and for increasing numbers of beads.
The enormous increase in computer power that can be made
available to investigators in the average Institution now in
comparison to only a decade ago, has pushed the limits of
the practical, routine computation of the hydrodynamics of
bead models to about 1,000 beads with the Gauss-
Seidel methods, and to about 800 with the most precise
method, the supermatrix inversion. For single structures for
which there is no high-resolution information available, that
is usually enough, and assemblies or oligomers can also be
tackled reasonably. For example, some of us have recently
published a model of integrin oy, 85 (M, =230,000) solu-
bilized in octyl glucoside, in which 36 beads were employed
(Rocco et al. 1993). This model is currently being used, for
instance, to study oy, 35 oligomerization in solution: side-
by-side vs. “rosette-style” complexes of dimers, trimers,
and tetramers can be easily modelled and their hydrody-
namic parameters computed and compared with ultracen-
trifugation and dynamic light scattering data, providing
sound tests for current theories of integrin aggregation
based mainly on EM images (Hantgan and Rocco, in
progress). As another example, we are developing a bead
model of fibrinogen (M, =340,000) consisting of 75 beads
(Rocco et al. 1991); it will then become feasible to model
the association of fibrin oligomers and oy, 85, its “natural”
receptor on the surface of platelets.

However, if flexibility is an issue, the time required for
analysis of the hydrodynamic properties increases dramati-
cally: while there is no difference in the maximum number
of beads that can be examined in respect to the rigid ensem-
bles case, each successive configuration must be completely
analyzed. For a bending of 30° in steps of 1°, that means a
factor of ~30 to ~100 times more computer time, depend-
ing on whether torsions are allowed or not. This time dou-
bles if the rigid-body approximation is then also utilized.

As a last point, we would like to discuss the possibility
and the utility of generating accurate bead models from
high-resolution three-dimensional structures. Apart from
its employment in the verification of the solution behav-
iour of single proteins and the role of hydration on it (for
instance, see Venable and Pastor 1988), this kind of mod-
elling is very appealing for its potential applications in the
structure determination of multidomain and/or modular
proteins. In fact, the proteins belonging to this class, while
usually being well outside the NMR range and often diffi-
cult to crystallize in intact form, lend themselves naturally
to a strategy of structure resolution one piece at a time,
where the pieces can be as small as single modules or can
span up to few units. Strategies involving the combined
use of small-angle X-ray or neutron scattering and elec-
tron microscopy data (Baron et al. 1991), with the addition
of sedimentation velocity data and a simplified from of
bead modeling (see Perkins 1994, and references therein),
have already been proposed as a way to infer the overall
structure of a multidomain/modular protein from those
of its single modules/domains. However, we believe that
a more sophisticated bead modelling procedure, which
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would also allow the computation of additional hydrody-
namic parameters, such as the rotational relaxation times
or the intrinsic viscosity, would greatly help in discrimi-
nating alternative structures. In this direction, we have de-
veloped and are refining a pair of programs, ASA and
TRANS, that convert automatically a protein structure
from the Protein Data Bank (PDB) format (Bernstein et al.
1977) into a bead model, utilizing as few non-overlapping
beads as possible, and taking directly into account the theo-
retically bound water of hydration (Rocco et al., in prep-
aration). Preliminary tests on small, well characterized
proteins, such as BPTI, RNase A and lysozyme, have pro-
duced very encouraging results, with all the available pa-
rameters calculated within a few percent of the experimen-
tal ones. The reduction in bead number achieved with our
strategy from that needed for an atomic description, is
about a factor of seven, meaning in practice that a module
of 10—14,000 mol.wt. could be represented with no more
than 100-140 beads, and strategies for a further reduction
without loss of accuracy are being explored.

Although recently there has appeared in the literature
alternative, more direct methods for the computation of the
hydrodynamic properties of proteins from their three-di-
mensional structures (Brune and Kim 1993; Antosiewicz
1995; Zhou 1995 a,b), we believe that the versatility of the
bead modelling procedure, with its capability of mixing to-
gether models based on high-resolution and low-resolution
data, will still be well positioned to play an important role
in the elucidation of biomacromolecular structures, dy-
namics and interactions. In this respect, we hope that the
BEAMS suite of modelling programs will favour its fur-
ther diffusion among the biophysical and structural biol-
ogy communities.
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The above article unfortunately contained three errors:

1. The e-mail address on the title page should read
rocco@vega.cba.unige.it

2. The Internet site in the Acknowledgements should be
www?2.cba.unige.it/MacroHydro

3. The correct Equation (25) should read
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We apologize for these mistakes.
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