Presenter: Emre Brookes

Topic: Small angle X-ray and Neutron Scattering

Outline - SAS

- Experimental setup
- Theory
- Modeling
- Software
- Practical considerations, Sample preparation etc.
- Possibly other techniques introduced as time permits

Experimental setup

Experimental setup

http://www.epn-campus.eu/fileadmin/_migrated/content_uploads/16.BARRETT_XRayOptics.pdf

Experimental setup

Synchrotron SAXS

- APS
- The Electron Storage Ring
- The 7-GeV electrons are injected into the 1104-m-circumference storage ring, a circle of more than 1,000 electromagnets and associated equipment, located in a radiation-proof concrete enclosure inside the experiment hall. A powerful electromagnetic field focuses the electrons into a narrow beam that is bent on a circular

YPICAL APS EXPERIMENT HALL & LAB/OFFICE MODULE CONFIGURATION

http://www.aps.anl.gov/About/APS_Overview/

Synchrotron SAXS

http://www.aps.anl.gov/About/APS_Overview/

Synchrotron SAXS

APS SAXS beamlines

List of APS SAXS beamlines and their capabilities

Beamline	Experiments	Energy Range [keV]	Q range [1/A)	Operating group	Contact person
1ID	High Energy SAXS; Simultaneous SAXS/WAXS	50-100	0.005 - 0.4 1-10	XSD	Jon Almer, 630-252-1049
12-BM	SAXS, Solution scattering	5 - 23 keV	0.008 - 1	XSD-CMS	Sungsik Lee, 630-252-7491
12-ID-B	simultaneous SAXS/WAXS, bioSAXS, Grazing incidence SAXS, solution scattering	7 - 14 keV	0.003 - 2.8	XSD-CMS	Byeongdu Lee, 630-252-0395 Xiaobing Zuo, 630-252-1553
12-ID-C	SAXS/WAXS, ASAXS, Grazing incidence SAXS, Time- resolved SAXS	4.5 - 36 keV	0.006 - 2.0	XSD-CMS	Soenke Seifert, 630-252-0391
14-ID	Time-resolved SAXS	7 - 17 keV, pink beam 3% bandpasss	0.02 - 3.5	BioCARS	Irina Kosheleva 630-252-0467
15-ID	SAXS	5 - 70 keV	0.003 - 0.5	ChemMatCARS	Mrinal Bera collaborations only, no GUP
18-ID	SAXS/WAXS, static and time-resolved, Biological samples, solutions, 2D focused beam $E=-$	$\frac{hc}{\lambda} \xrightarrow{3.5 \cdot 40} 3.5 \text{ to } 0.3$	0.002 - 3.0 81 Angstroi	BIOCAT	Tom Irving, 630-252-0524

https://small-angle.aps.anl.gov/aps-saxs-beamlines

Reactor SANS

SANS Instruments: For bioSANS we use ,cold neutrons.'

Courtesy Cy Jeffries, EMBL

Spallation SANS

SNS – Oak Ridge

Negatively charged hydrogen ions are produced by ion source. Hydrogen ions injected into linear particle accelerator (~90% c) H⁻ ions pass through a foil, leaving protons.

Protons enter accumulator ring, accumulate in "bunches" "bunches" released as pulse

Pulses strike a target of liquid mercury, where spallation occurs. Spalled neutrons slowed down and guided to beam lines.

By Kjerish - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php? curid=54378478

ISIS – RAL ESS – Lund 2025 Proton "bunches" spall off Tungsten

Solution BioSAXS

Solution BioSAXS vs Fibre SAXS

Momentum transfer

Momentum transfer N.B.

Always report the momentum transfer used!

Momentum transfer N.B.

"momentum transfer" q or s may be in units of 1/Angstrom or 1/nm

Always report the units used!

Scatterers not at the origin — Phase difference

Path difference = $r \cdot u_s - r \cdot u_i = r \cdot (u_s - u_i)$ corresponds to a phase difference:

$$\phi = \frac{2\pi \mathbf{r} \cdot (\mathbf{u}_s - \mathbf{u}_i)}{\lambda} = \mathbf{r} \cdot \mathbf{q} = 2\pi \mathbf{r} \cdot \mathbf{s} \quad \text{or} \quad \mathbf{r} \cdot \mathbf{s} \qquad D. \text{ Svergun and coll.}$$

A(q) is the scattered amplitude by the scatterer at the origin $A(q)e^{\mathbf{i}\phi}$ is the scattered amplitude by the scatterer at the position \mathbf{r}

Given a collection of N scatterers with scattering factors f_i , at positions \mathbf{r}_i we define:

$$\mathbf{F}(\mathbf{q}) = \sum_{i=1}^{N} f_i \, \mathbf{e}^{\mathbf{i} r_i q}$$

Given a continuous electron density, $\rho(\mathbf{r})$, we define:

$$\mathbf{F}(\mathbf{q}) = \int_{V_{\mathbf{r}}} \rho(\mathbf{r}) \mathbf{e}^{\mathbf{i} r q} \, dV_{\mathbf{r}}$$

The real space intensity is in either case:

$$\mathbf{I}(\mathbf{q}) = \mathbf{F}(\mathbf{q}) \cdot \mathbf{F}^*(\mathbf{q})$$

Scattering by assemblies of scatterers under special conditions

Assuming the system is statistically isotropic:

spherical average
$$\langle \mathbf{e}^{i\mathbf{r}\cdot\mathbf{q}} \rangle = \frac{\sin(rq)}{rq}$$
 Debye 1915 Debye 1915 Peter J. W
Debye 1884-1966

The real space intensity I(q) can be simplified to real number computations:

$$F(q) = \sum_{i=1}^{N} f_i \frac{\sin(r_i q)}{r_i q}$$

$$I(q) = \sum_{i=1}^{N} \sum_{j=1}^{N} f_{i} f_{j} \frac{\sin(r_{ij}q)}{r_{ij}q}$$

Glatter, O. and Kratky, O. "Small Angle X-Ray Scattering" 1982

Scattering factors

What scatters?

X-Ray source \rightarrow electrons Neutron source \rightarrow nuclei

For X-Rays: one can compute atomic form factors from the electron density

 $f(q) = \int_{V_{\mathbf{r}}} \rho(\mathbf{r}) \; dV_{\mathbf{r}}$

These are typically taken from tables of Gaussian coefficients

$$f(q) = \sum_{k} a_{k} \mathbf{e}^{-b_{k} \left(\frac{q}{4\pi}\right)^{2}} + c$$

from the International Tables for Crystallography (4 terms) or *Waasmaier and Kirfel, Acta Cryst. A51:416-431, 1995* (5 terms)

X-ray atomic form factors of oxygen (blue), chlorine (green), Cl- (magenta), and K+ (red); smaller charge distributions have a wider form factor.

Scattering factors X-rays vs Neutrons

Courtesy Cy Jeffries, EMBL

What we have so far

Assuming statistically isotropic, monodisperse and sufficiently dilute (ideality - no correlation between molecules)

$$I(q) = N_{\text{molecules}} \sum_{i=1}^{N} \sum_{j=1}^{N} f_i f_j \frac{\sin(r_{ij}q)}{r_{ij}q}$$

The buffer also scatters

So we subtract an "excluded volume" term from the atomic form factors to compensate

$$f(q) = \sum_{k} a_{k} \mathbf{e}^{-b_{k} \left(\frac{q}{4\pi}\right)^{2}} + c - v_{\mathrm{ex}} \rho_{0} \mathbf{e}^{-q^{2} \frac{v_{\mathrm{ex}}^{2/3}}{4\pi}}$$

Scattering lengths, biological elements.

The coherent *b* for ¹H is negative: Attractive interaction potential.

The incoherent scattering length of ¹H is enormous – one of the longest incoherent scattering lengths!

Courtesy Cy Jeffries, EMBL

Different classes of macromolecules have different average scattering length densities.

The reason? Proteins, polynucleotides, and lipids naturally have different ¹H per unit volume.

If hetero-macromolecular complexes, e.g., protein bound to DNA, are placed into the appropriate % v/v ${}^{1}H_{2}O/{}^{2}H_{2}O$ solvents, it is possible to extract the scattering contributions for the whole complex (e.g., 100% v/v ${}^{1}H_{2}O$ buffers) and from the individual components at the respective match points (for example 43% and 65% v/v ${}^{2}H_{2}O$).

Match point: $\varnothing p = 0$

This type of experiment is called *contrast matching*.

SANS contrast matching

Courtesy Charles Glinka NCNR

I(q) scaling

When comparing experimental results with a simulated curve, I(q) is often scaled arbitrarily scaled by multiplying by a positive constant.

$$I(q) \cong kI(q)$$

Linear offsets are not generally acceptable.

 $I(q) \not\cong I(q) + c$

Note that if you are comparing absolute intensities, you may want to avoid scaling. N.B. different sources and experimental setups generally have different beam intensities and detectors have different sensitivities.

Basic law of reciprocity in scattering

Given the results of a SAS experiment

Ideal and monodisperse solution

Given *N* molecules of *n* types in solution

$$N = \sum_{j=1}^{n} n_j$$

Ideality & Monodispersity $I(q) = NI_1(q)$

Simulating a SAS curve

Simulating a SAS curve from a "dry" and "wet" model

Calculators for a SAS curve & how they hydrate

CRYSOL – Spherical Harmonics – Radial expansion Svergun D.I. et al (1995) J. Appl. Cryst., 28, 768-773.

FoXS – $P(r) \rightarrow I(q)$ – Radial expansion Schneidman-Duhovny et al. Biophys. J. 2013

Pepsi-SAXS – Spherical Harmonics – Grid Sergei Grudinin et al., Acta Cryst., 2017, D73, pp.449 – 464

SASTBX – Spherical Harmonics & Zernike polynomials – Radial expansion Haiguang Liu et al., J. Appl. Cryst., 2012 45:587-593

SasCalc – Golden ratio – None (Hypred) M.C. Watson et al., J. Appl. Cryst., 2013, 46, 1171-1177

WAXSiS – Debye – MD *Po-chia Chen et al., Biophys. J., 2014, 107, 435-447*

AXES – Complex space – MD based A. Grishaev et al., J. Am. Chem. Soc. 2010, 132, 15484-15486

US-SOMO – Full Debye, Spherical harmonics, complex space, & wraps others – None natively *Brookes et al. (2012). ACM DOI:10.1145/2335755.2335839*

 $Y_l^m(\theta,\phi)$

Calculators for a SAS curve and fitting parameters

FoXS[<u>1</u>] Pepsi-SAXS[<u>1</u>]	
SASTBX[1]	
SasCalc[1],[2] =	
SoftWAXS[1]	
AXES[1]	
Ø	
Explicit water model [Net supported yet]	
Use explicit hydrogens [only CRYSOL FoXS Pepsi-SAXS]	
Automatic background subtractions [only CRYSOL, Pepsi-SAXS]
CRVSQL specific	_
	_
chain identifier	
maximum number of harmonics	15
fibonacci grid	17
solvent density	0.334
contrast of hydration shell (Dro)	Crysol Default 🗸
atomic radius (Ra)	Crysol Default 🗸
excluded volume (Vol)	Crysol Default 🗸
FoXS specific	_
score log	_
coarse grained (CA only)	
use offset	
partial profile	
background subtractions	
min c1	0.99
max c1	1.05
min c2	-2
mar al	4

Guinier analysis

Guinier law

The scattering intensity of a particle can be described by a Gaussian curve in the vicinity of the origin. The validity domain actually depends on the shape of the particle and is around $q < 1.2 / R_g$ for a globular shape.

$$I(q) = I(0) \mathbf{e}^{-q^2 R_g^2}$$

Prof. André Guinier 1911-2000 Orsay, France

Extrapolated intensity at origin

Guinier law, in log form :

$$\ln[I(q)] = \ln[I(0)] - \frac{q^2 R_g^2}{3}$$

ln[I(q)] vs q^2 : Guinier plot. Linear regression on the experimental Guinier plot directly provides R_g and I(0).

Radius of gyration

Radius of Gyration

$$R_g^2 = \frac{\int_{V_{\mathbf{r}}} \Delta \rho(\mathbf{r}) r^2 \, dV_{\mathbf{r}}}{\int_{V_{\mathbf{r}}} \Delta \rho(\mathbf{r}) dV_{\mathbf{r}}}$$

 R_g^2 is the mean square distance to the center of mass weighted by the contrast of electron density.

If $\Delta \rho(r)$ is approximately constant then R_g is a geometrical quantity.

 R_g is an *index of non sphericity*. For a given volume the smallest R_g is that of a sphere. $R_g = \sqrt{\frac{3}{5}}R$

Guinier analysis

Mass retrieval from Guinier analysis

$$I(0) = \frac{cMr_0^2}{N_A} [v_{\rm mol}(\rho_{\rm mol} - \rho_{\rm buffer})]^2$$

I(0) from Guinier analysis, in absolute units cm⁻¹

$$I(q) = I(0) \mathbf{e}^{\frac{-q^2 R_g^2}{3}}$$

c mass concentration

 r_0 is the classical electron radius

 $v_{\rm mol}$ volume of molecule

 $\rho_{\rm mol}$ electron density of molecule

 $\rho_{\rm buffer}$ electron density of solvent

 \rightarrow molar mass M

Mass retrieval from Guinier analysis

$$I(0) = \frac{cMr_0^2}{N_A} [v_{\rm mol}(\rho_{\rm mol} - \rho_{\rm buffer})]^2$$

 $\rightarrow I(0) \propto M$

Guinier Plot

Validity range "Guinier region":

 $0 < R_g q < 1$ for a solid sphere $0 < R_g q < 1.2$ rule of thumb for a globular protein

Guinier Plot – evaluation of solution properties

Guinier Plot – evaluation of solution properties

Guinier Plot – concentration series

Guinier Plot

A linear Guinier plot is a requirement, but it is **not a sufficient condition** ensuring monodispersity and ideality of the sample.