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Survey of Numerical Modeling

We will touch on the following subjects:

Model Building
● Exact models
● smoothing

Theory of Fitting
● What is a good fit and how can it be measured?

Parameter Estimation
Optimization – how do I fit the model to the data?

● Linear vs. non-linear least squares
● Linearization of non-linear systems
● Brute force methods – Grid searches
● Stochastic Methods – Genetic algorithms

Effect of noise on analysis
Statistical analysis and Monte Carlo approaches
Parallel Implementation



Data Fitting

Modeling involves the description of some observable data 
(experimental measurements) using a mathematical equation that 
describes the underlying physical properties of the experiment.

First, we need to identify a general, mathematical model that can 
represent the observed data. The parameters of the model describe 
the specifics of the data.

Second, we need to determine the values of the parameters in the 
model that best fit our data. This is accomplished by a fitting 
algorithm that minimizes the difference between the data and model. 
Generally, an initial estimate is required that is then improved.

Finally, we need to estimate the error in the parameters we 
determined in the fitting process and obtain the confidence 
intervals.



To build a model, one needs to understand the physical properties of the 
observed process. Many processes can be described by differential 
equations. When solved, these equations describe a linear or nonlinear 
model:

Example – radioactive decay:

Hypothesis: The rate of decay is proportional to the number of nuclei 
present.

The hypothesis can be formulated as a differential equation that describes 
the anticipated change:

Integrate the differential equation over n and t:

With the solution: 

Giving rise to fitting parameters N0, a and b

How to build a Model

∫
0

n
dN
N

= − a∫
t0

t

dt

∂N
∂ t

= − a N

N (t ) = N0 e
−a(t−t0) + b



You start with some experimental data...

Absorption data from multiple concentrations fitted to a sum of Gaussian functions
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You start with some experimental data...

Absorption data from multiple concentrations fitted to a sum of Gaussian functions

OD = a∑
i=1

n

ci e
[−(x i−μ i )

2

2σi
2 ]

+b

Parameters aren't really 

useful here (except outer 

amplitudes), model is 

only used to find a 

smoothing shape that 

can be scaled to the 

appropriate 

concentration



Method of Least Squares

Fitting Data to a Model by the Method of Least Squares:

Any observable process that influences the measurement 
needs to be accounted for in order for the model to yield 
meaningful results. The object is then to minimize the 
residuals between the model and the data:

Extracting parameters from a simulated solution by fitting the 
model to experimental data is called an “Inverse Problem”

MIN ∑
i=1

n  Datai−Model i
uncertainty i


2

= MIN  2



Methods of Least Squares

Assumptions made in the Method of Least Squares:

● The model is a truthful representation of reality

● All error is associated with the dependent variable. We can scale the 
reliability of each observation with an uncertainty factor σi. 

● All experimental noise is considered to be of Gaussian distribution

A non-parametric fit is used to smooth data for display, where the intrinsic 
model is of little interest, and hence the parameters may or may not be 
useful.

First-principles methods have meaningful parameters related to physical 
properties of the molecules, because the models are design to describe 
physical processes (light scattering, sedimentation, diffusion, etc).

MIN ∑
i=1

n  Datai−Model i
uncertainty i


2

= MIN  2



Experimental Uncertainties

The uncertainty of a measurement can be determined by repeating 
the experiment several times. Each time, a slightly different value 
is obtained for the experimental observation. Assuming a 
Gaussian distribution of errors in the measurement, one can 
determine the standard deviation σ of the distribution of 
measurement values, and use σ to set error bars on a 
measurement and to scale the contribution of a datapoint to the 
sum of the residuals.

The standard deviation can be 
calculated by using this formula:

where     is the average of all
measurements.

 =  1
n ∑i=1

n

 x i − x 2

x



Fitting Basics

For a straight line
we have:      y = a + bx

The least squares equation
Is given by:

The distances
are measured
perpendicular
to the data. 

The object is to 
find the equation
of the straight line
that minimizes the
distance between
the straight line and
the data points.

∑
i=1

n  Di − a − b x i

 i


2

= 2a , b

∑
i=1

n

( Di − M i
σ i

)
2



Fitting Basics

What is an error 
surface?

Each parameter
combination a, b 
results in a unique 
error when fitted to
the experimental
data. 
The optimal 
solution occurs 
where the error is 
the smallest.
Ideally, the error 
surface is 
continuously
differentiable.               Error surface for some function y = F(a, b)



Solving the Least Squares Equation

The minimum in the differences occur 
where the derivative of our objective 
function with respect to the 
parameters is zero, so we need to 
differentiate it with respect to the 
parameters of interest, a and b, and 
set the derivative to zero, and find the 
values of a and b that satisfy this 
requirement.

∂χ2

∂a
= 0 = −2∑

i=1

n

( Di − a − b xi

σ i
2 )

∂2

∂b
= 0 = −2∑

i=1

n  x i Di − a − b x i

 i
2 

∑
i=1

n  Di − a  b xi
 i


2

= 2a ,b

∂χ2

∂a
= 0

∂χ2

∂b
= 0



Solving the Least Squares Equation

This leads to a system of linear equations:

Or, in matrix form:

∑
i=1

n
a

 i
2  ∑

i=1

n b xi

 i
2 =∑

i=1

n Di

 i
2

∑
i=1

n a x i

 i
2  ∑

i=1

n b x i
2

 i
2 =∑

i=1

n Di x i

 i
2

⟦∑i=1

n
1

σ i
2 ∑

i=1

n xi

σ i
2

∑
i=1

n x i

σ i
2 ∑

i=1

n xi
2

σ i
2 ⟧⟦a

b⟧ = ⟦ ∑
i=1

n Di

σi
2

∑
i=1

n D i xi

σi
2 ⟧



Solving the Least Squares Equation

Let: 

(where x1 = a (i.e., intercept) and x2 = b (i.e., slope))

In matrix notation: AX = B, with solution A-1AX = A-1B = X

The equations can be solved either by inverting A or by using 
Cramer's Rule:

x1 =
b1 a22 − b2 a12

a11 a22−a12 a21

, x2 =
b2 a11 − b1 a21

a11 a22−a12 a21

A = ⟦∑i=1

n
1
σ i

2 ∑
i=1

n xi

σ i
2

∑
i=1

n x i

σ i
2 ∑

i=1

n xi
2

σ i
2 ⟧ , X = ⟦ x1

x2⟧ , and B = ⟦ ∑
i=1

n Di

σ i
2

∑
i=1

n Di xi

σ i
2 ⟧



Goodness of fit

The quality of the fit is determined by the randomness of the 
residuals and the root mean square deviation (RMSD).

The randomness of the residuals can be measured by determining 
the runs. Runs (R) are the number of consecutive positive (p) or 
negative (n) residuals from the mean.

RT = R−R
σR

R = 2np
n+ p

+1

σR
2 = 2np (2np−n− p )

(n+ p )2 (n+ p−1 )

The RT value is a measure of 
randomness and can be compared 
to a normal table to find out the 
probability of the test being random



Linear Models

The equation of a straight line is considered a linear equation:

y = a + bx

This equation is linear in the coefficients that are fitted. The 
equation doesn't have to be that of a straight line to be 
considered linear.

y = a + bx + cx2 + dx3 + ex4 + ...

As long as the coefficients are linear, the equation is 
considered a linear fitting equation, no matter how wildly 
nonlinear the terms of the independent variable are:

y = a + b(x – sin(x3)) + c e-(4-3x) + d ln(3x4) + ...

In general, we can write for any linear equation:

y = a1X1 + a2X2 + a3X3 + a4X4 +...

where Xi can be any nonlinear term.



Linear Models

Linearization of a nonlinear equation:

Turn                    into a linear function of the form:

y = a + bx

take log on both sides:

Fitting the log of y reduces the nonlinear equation to a linear
equation, y* = a* + bx, where y* = ln y and a* = ln a.

This is not possible when a baseline is added:

y = aebx

ln y = ln a  bx

y = aebx+c



Parameter Constraints

Sometimes, we may want to constrain the value of a 
parameter – for example, we don't want the amplitude of an 
exponential to turn negative during fitting:

By making the transformation to fitting the log of a number 
we can assure that the number itself will never be negative 
(negative amplitudes don't make sense in many physical 
models). 

y = a ebx  c = e ln a  bx  c



Nonlinear Regression

Why is it such a big deal if an equation is linear or nonlinear?
It turns out that nonlinear functions need to be fitted using 
iterative approaches, while linear functions can be fitted in a 
single iteration, so it helps to have the objective function in a 
linear form. For nonlinear systems, a Jacobian is defined.

J = 〚 
∂ X
∂a1

x1 ∂ X
∂a2

x1

... ∂ X
∂an

x1

∂ X
∂a1

x2 ∂ X
∂a2

x2

... ∂ X
∂ an

x2

... ... ... ...

∂ X
∂a1

xm ∂ X
∂a2

xm

... ∂ X
∂an

xm

〛
The idea: Iteratively improve 
the parameter estimates by 
following along the gradient 
of the error function in the 
direction of maximum 
“improvement”. This 
requires knowledge of the 
partial derivatives for each 
parameter at each point in 
the experiment. We build the 
Jacobian matrix:



Nonlinear Regression

Our equation is:      J * R = Δy, with R = a - g

where J is the Jacobian matrix, g is the current parameter estimate, 
a is the adjustment made to the parameter estimate in the current 
iteration, this is the value we need to find. Δy is the difference 
between the experimental data and the model

Solve for a:      JTJ  R = JT  Δy, substitute JT  Δy = B, 
Option 1: use inverse: (JTJ )-1 JTJ  R = R = (JTJ )-1 JT  Δy
Option 2: JTJ is positive definite, so use Cholesky decomposition:
JTJ = LLT

L(LTR) = B, substitute LTR = Z, to get LZ = B and solve for Z using 
forward substitution, then solve for R using backward substitution: 
LTR = Z, then solve for a to get the adjustment for the parameter. 

Iterate until converged.



Optimization Methods

Linear Optimization:

Straight line fits
Generalized linear least squares - single iteration fitting of 
objective functions of the type:

NNLS (non-negative constrained least squares):

Multidimensional spectrum analyses – brute force fitting 
approaches like grid searches (HPC recommended)

Non-parametric fits (B-splines, polynomial smoothing, etc)

y = a0∑
i=1

n

ai X i , −∞  ai ∞

y = a0∑
i=1

n

ai X i , ai ≥ 0



Optimization Methods

Nonlinear Optimization using Gradient Descent Methods
for functions of the type:

Levenberg-Marquardt (stable, robust, works well even if initial 
guesses are rather far away from optimum)

Gauss-Newton methods
Quasi-Newton (works well near optimum)
Conjugate gradients
Tangent approximation methods (derivatives are not required)
Neural networks

y = F ai , x i



The Optimization Challenge:

Problem with nonlinear least squares optimization:

For multi-component systems, the nonlinear least squares fitting 
algorithm gets easily stuck in local minima and the solution depends 
on the starting points. Problem gets worse with more parameters 
(i.e., multiple components).



Optimization Methods

Stochastic Methods

Monte Carlo
Simulated Annealing
Random walk
Genetic Algorithms



Optimization Methods

Comparison Stochastic vs Deterministic Fitting Methods:

Stochastic:
● Large search space possible
● Generally slow converging
● Excellent convergence properties if given enough time
● Compute-intensive
● Suitable for many parameters
● Good for ill-conditioned error surfaces
● Derivatives not needed

Deterministic:
● Small search space
● Suitable for a few parameters only
● Well-conditioned error surface
● Very fast converging
● Requires derivatives



  

Fitting of noisy data prevents unique solutions – multiple solutions are 
possible.

We need to minimize noise when modeling data.

There are three ways to reduce or eliminate noise:

1. fit the noise
2. maintain an exceptionally well tuned instrument
3. design your experiment to optimize the quality of the data 

There are two noise types:

1. Systematic noise: Signal comes from a systematic source that is not part 
of the parametric model (finger print on the lens of a camera) and is highly 
correlated with some feature of the experiment.

2. Stochastic (random noise): Noise is (hopefully) Gaussian in distribution 
and uncorrelated to any feature of the experiment

(1) can often be fitted and accounted for, which (2) must be minimized. 

Noise & Data Modeling Considerations



  

Noise & Data Modeling Considerations

A first principles approach allows us to model the experimental 
data by fitting it to a mathematical model. The model represents 
the physics of the experiment, and contains parameters of interest 
to the experimentalist. We need to find the values of these 
parameters by adjusting the model so it matches the data. This is a 
hard problem called an “inverse problem” that requires 
optimization (fitting) algorithms which aid us in adjusting the 
parameters so the model fits the data.

In UltraScan this is accomplished by a least squares fitting 
approach that compares each data point from the model with the 
corresponding point in the experimental data:

Optimally, the difference is zero, but because of experimental 
noise this never happens, since the model is noise free.

Minimize∑
i=1

N

(Datai − Modeli )
2 ( i  over radius and time)



  

Noise & Data Modeling Considerations

Fitting of noisy data prevents unique solutions – multiple solutions are possible.

We need to minimize noise when modeling data.



  

There are three ways to reduce or eliminate noise:

1. fit the noise
2. maintain an exceptionally well tuned instrument
3. design your experiment to optimize the quality of the data 

There are three noise types:

1. Time Invariant noise: Noise is different for each radial position, but the same 
offset for each scan, and hence time independent (finger prints).

2. Radially Invariant noise: Noise is different for each scan, but each radial 
position is offset by the same amount throughout the scan (baseline variation)

3. Stochastic (random noise): Noise is different for each radial and time point and 
it is (hopefully) Gaussian in distribution

(1) and (2) can be fitted by UltraScan and removed from the data



  

Time Invariant noise: Noise is different for each radial position, but 
the same offset for each scan, and hence time independent.

Noise & Data Modeling Considerations



  

Radially Invariant noise: Noise is different for each scan, but each 
radial position is offset by the same amount throughout the scan

Noise & Data Modeling Considerations



  

Stochastic (random noise): Noise is different for each radial and 
time point and it is (hopefully) Gaussian in distribution:

Noise & Data Modeling Considerations





  

Homework 2

Homework (25 pts): For the dataset shown on the right 
calculate the equations for a and b for a straight line 
fit using Cramer's rule (y = c1 + c2x). Assume a 
standard deviation of 1 for each measurement. Show 
your work. Compare your answer by fitting with a 
plotting program. Show results. Extra credit (10 pts): 
write a Python or C++ program that solves this 
problem.

c1 =
b1 a22 − b2 a12

a11 a22−a12 a21

, c2 =
b2 a11 − b1 a21

a11 a22−a12 a21

 X    y   σ
_____________
 2 10.6   1
 4 12.1   1
 6 14.5   1
 8 20.8   1
10 17.3   1
12 24.7   1
14 29.1   1

A = ⟦∑i=1

n
1

σi
2 ∑

i=1

n x i

σ i
2

∑
i=1

n x i

σi
2 ∑

i=1

n xi
2

σ i
2 ⟧ , X = ⟦c1

c2
⟧ , and B = ⟦ ∑

i=1

n Di

σ i
2

∑
i=1

n Di x i

σ i
2 ⟧
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