
  

A first principles approach allows us to model the experimental 
data by fitting it to a mathematical model. The model represents 
the physics of the experiment, and contains parameters of interest 
to the experimentalist. We need to find the values of these 
parameters by adjusting the model so it matches the data. This is a 
hard problem called an “inverse problem” that requires 
optimization (fitting) algorithms which aid us in adjusting the 
parameters so the model fits the data.

In UltraScan this is accomplished by a least squares fitting 
approach that compares each data point from the model with the 
corresponding point in the experimental data:

Optimally, the difference is zero, but because of experimental 
noise this never happens, since the model is noise free.

Modeling of Data

Minimize∑
i=1

N

(Datai − Modeli )
2 ( i  over radius and time)



  

Time- and radially- invariant noise can be fitted by UltraScan and 
removed from the data to improve the results.

Stochastic noise cannot be removed and should be minimized by 
maintaining a well calibrated instrument and performing a well-
designed experiment!

Data subtraction in absorbance mode convolutes two stochastic 
vectors and leads to an increase in stochastic noise by  ~ 

Remember: 

you cannot get reliable answers if you start 
with low quality input data!

Summary:

 2



  

Factors that affect Accuracy - Meniscus



  

Modeling Flow with the Lamm Equation

 

Cao W., Demeler B. Modeling analytical ultracentrifugation experiments with an adaptive space-
time finite element solution of the Lamm equation. (2005) Biophys J. 89(3):1589-602.

The Lamm Equation describes the flow of a single solute in the sector- shaped 
analytical ultracentrifugation cell over time and radius. This allows us to 
simulate an entire experiment from start to finish.

To solve this equation we use the finite element method. This method 
discretizes the two independent variables, the radius and the time.

This way we can calculate the concentration of the solute during the experiment 
for each radial point at each time point (scan). 

Multiple non-interacting solutes are modeled by summing the results from two 
independent simulations.
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Lamm Equation for Non-interacting Systems:

(∂C
∂ t ) r = − 1

r
∂
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Lamm equation 
L(s, D, C) for a single 
ideal solute:

Lamm equation for a 
mixture of non-

interacting solutes:
C = ∑

i=1

n

ci L(si , D i)



  

Lamm Equation for Interacting Systems

(∂C
∂ t ) r = − 1
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Concentration             Sedimentation   Diffusion

Lamm equation 
L(s, D, C) for a single 
ideal solute:

Lamm equation for an 
interacting system

(e.g., monomer-dimer,
mass action applies):
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Optimization and Analysis Methods 
for Sedimentation Velocity

2-dimensional Spectrum Analysis (2DSA): High-resolution, general and model-
independent solution for size and anisotropy distributions of non-interacting systems

Parametrically Constrained Spectrum Analysis (PCSA): Identifies size/anisotropy 
relationships for polymerizing systems and provides a constrained fit over the 2-
dimensional sedimentation/diffusion space.

Custom Grid Analysis (CG): Takes advantage of prior knowledge to parameterize the 
2DSA grid in terms of alternate hydrodynamic variables.

(Discrete Model) Genetic Algorithms (GA): Robust non-linear least squares optimization 
method that provides parsimonious regularization of 2DSA spectra. Also used for fitting of 
discrete, non-linear models (reversible association, non-ideality, co-sedimenting 
solvents).

Monte Carlo Analysis (MC): Used to measure the effect of noise on the fitted parameters, 
yields parameter distribution statistics

van Holde – Weischet Method (vHW): Used to generate diffusion-corrected sedimentation 
profiles which provide finely detailed comparisons between multiple samples.

C(s), C(s, f/f0), C(s, M): Low resolution methods - not used in UltraScan.



Nonlinear Least Squares Finite Element Fitting

Direct Boundary fitting uses a nonlinear least squares minimization 
approach to fit a model function (a sum of Lamm equations) Y* to an 
experimental dataset Y:

Our Model:

The model is compared to the experimental data in the least squares 
sense for each data point in the experiment (over time and radius)

here, c, b, s and D are nonlinear parameters, and are adjusted 
independently in an iterative fit (Svedberg, SedAnal, Lamm) . 

Min∑
i=1

r

∑
j=1

t

[Y ij
*− Y ij ] 2

Y * =∑
k=1

n

ck L  sk , Dk   b



Nonlinear Least Squares Finite Element Fitting

Finite Element - Nonlinear Least Squares (RMSD: 4.61 x 10-3)
Monte Carlo is needed to define statistical confidence of 
fitted parameters.

M1: 128.8 kD (135.7 kD) 
f/f0: 3.10
s1: 5.43 x 10-13

D1: 2.28 x 10-7

M2: 14.6 kD (14.3 kD)
f/f0: 1.29
s2: 1.71 x 10-13

D2: 1.02 x 10-7



The Optimization Challenge:

Problem with nonlinear least squares optimization:

For multi-component systems, the nonlinear least squares fitting 
algorithm gets easily stuck in local minima and the solution depends 
on the starting points. Problem gets worse with more parameters 
(i.e., multiple components).



The Optimization Challenge:

1. For complicated problems, nonlinear optimization will fail and the 
fitting algorithm will not converge to the global optimum.

2. In addition, due to noise the solution will not be unique and there 
will be an infinite number of equally likely solutions with the same χ2 

How do we get around these problems?

Problem 1 can be alleviated by linearizing the problem

Problem 2 is intractable. The best we can do is to perform a statistical 
error analysis and use Monte Carlo methods.



C(s)/C(M) Method (P. Schuck)

Linearization Approach 1 – keeping a constant  f/f0 value:

Decomposition of the concentration function into a linear combination of 
orthogonal basis functions (Lamm equations) distributed over a 
partitioned s-value range and a constant frictional ratio Φ = f/f0:

Fit only the amplitudes (cj ) of those components that make a non-zero 
contribution by doing a non-negatively constrained linear least squares fit 
over all components.

C = c1 L  s1, D s1,    c2 L  s2, D s2,    ...

Component 1 Component 2



C(s)/C(MW) Method (P. Schuck)

Parameterization Approach: 

Instead of using nonlinear fitting parameters s and D (which are required for the 
solution of the Lamm equation), we treat these parameters as constants. The s-value 
is partitioned over a range from smin < s < smax in equi-distant intervals. Using the 
Stokes-Einstein relationship, the diffusion coefficient can be expressed as a function 
of the sedimentation coefficient and a constant frictional ratio Φ = f/f0

This way, given an s-value and a fixed shape, a corresponding diffusion coefficient 
can be calculated for each s-value and the Lamm equation term for each species can 
be calculated. Then the only question remaining is the amplitude of each term, which 
is a linear fit, and the best match for k. The frictional ratio can be adjusted for a best fit 
average using a line search.

Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity 
ultracentrifugation and Lamm equation modeling. Biophys. J. 78(3):1606-19, 2000

D = RT

18 N  2 /3  2 1−  
s



C(s)/C(MW) Method (P. Schuck)

Min∑
i=1

m

∑
j=1

n

[ c j L  s j , D s j   − Y i ] 2

Note: This will generate Lamm equations that have a fixed frictional ratio and
a diffusion coefficient that is linked to the sedimentation coefficient. 

ALL PARAMETERS EXCEPT THE AMPLITUDES ARE CONSTANT!

  Lawson, C. L. and Hanson, R. J. 1974. Solving Least Squares Problems. Prentice-
Hall, Inc. Englewood Cliffs, New Jersey

Perform a linear fit using the NNLS method* and only fit the 
amplitudes cj subject to the constraint c j≥0



C(s)/C(MW) Method (P. Schuck)



C(s)/C(MW) Method (P. Schuck)

f/f0 = 2.297 (fitted)f/f0 = 1.29 (Lysozyme) f/f0 = 3.10 (DNA)

C(s) method (lowest f/f0): s1: 5.43 x 10-13 (61 %), s2: 1.56 x 10-13 (39 %)

RMSD for C(s) fit: 6.0e-3, RMSD for FE fit: 4.61e-3

With increasing f/f0, the number of artifactual peaks increases 
(regularization hides this problem)

Fitted f/f0 values provide an average of all components



C(s)/C(MW) Method (P. Schuck)

f/f0 = 2.297 (fitted)

C(s) method (lowest f/f0): s1: 5.43 x 10-13 (61 %), s2: 1.56 x 10-13 (39 %)

DNA:

Molecular Weight = 120.6 kD
too low

Lysozyme:

Molecular Weight = 30.1 kD
too high



Motivation: Wish List for an Optimal Method: 

We need a method that satisfies the following criteria:

Generality – works accurately and reliably for any system

High resolution/high information content (s, D, partial conc., Kds)

Model independent – it needs to be able to find it's own model

Suitable for global fitting – can integrate other experiments

Always converges to the global minimum (overcomes the egg 
carton problem!)

Computationally efficient



2-Dimensional Spectrum Analysis

Solution: Allow for variation in f/f0 as well.

This is now a very large problem, but one that can fortunately be calculated in a 
single iteration, with one Lamm equation for each coordinate point in the grid:

Using NNLS for this problem guarantees cs, k > 0

    m = # of radial points * # of time points = 1000 * 100 = 100,000

     n = # of sedimentation value grid points (~30 - 50)

     f = # of f/f0 value grid points (~30-50)

Total size: 250 million * 4 bytes/value + workspace, altogether > 1 GB

Y * = ∑
s=smin

smax

∑
k =1

k max

c s , k L [ s , D  s , k  ]  b Min∑
i=1

r

∑
j=1

t

[Y ij
*− Y ij ] 2

A x = b Lc = Y

Brookes, E, Cao, W, Demeler, B. A two-dimensional spectrum analysis for sedimentation velocity 
experiments of mixtures with heterogeneity in molecular weight and shape. Eur Biophys J. 2010 
39(3):405-14.



2-D Spectrum Analysis - Refinement:

Step 1: Start with original grid definition:



2-D Spectrum Analysis - Refinement:

Step 2: Perform NNLS



2-D Spectrum Analysis - Refinement:

Step 3: Save non-zero elements into a separate array



2-D Spectrum Analysis - Refinement:

Step 4: Shift grid into Y-direction



2-D Spectrum Analysis - Refinement:

Step 5: Perform NNLS again, but only on the shifted grid (blue)



2-D Spectrum Analysis - Refinement:

Step 6: Add the newly found non-zero elements to the stored 
array



2-D Spectrum Analysis - Refinement:

Step 7: Now shift the grid into the X-direction



2-D Spectrum Analysis - Refinement:

Step 8: Perform NNLS on the shifted grid again



2-D Spectrum Analysis - Refinement:

Step 9: Add the new non-zero elements to the stored array



2-D Spectrum Analysis - Refinement:

Step 10: Complete the square and shift the grid once more in the
               Y-direction



2-D Spectrum Analysis - Refinement:

Step 11: Perform NNLS on the new grid



2-D Spectrum Analysis - Refinement:

Step 12: ... and add the non-zero points to the storage array



2-D Spectrum Analysis - Refinement:

Repeat this process 
until the desired grid 
size has been reached



2-D Spectrum Analysis - Refinement:

Divide and Conquer approach – evaluate multiple grids slightly off-set against 
each other, and accumulate results:

Final result is fairly sparse, but it is also degenerate, includes false positives and 
needs further refinement. It can be used to identify regions that contain signal.



Moving Grid Approach – parallel HPC implementation

Calculate each individual grid in parallel .... 

Grid
1

Grid
1

Grid
2

Grid
3

Grid
4

Grid
1

Grid
5

Grid
6

Grid
7

Sub
Grid 1

Sub
Grid 2

Combine .... 

Merge .... 

Final
Grid

Evaluate each grid on a different processor, and communicate by MPI

Iterate until there is no more change .... 



  

2DSA Result is used to initialize
Genetic Algorithms

The 2DSA finds regions 
with signal in the 
parameter space.

Genetic Algorithms are 
used to refine 2DSA 
solutions and to remove 
false positives through

“Parsimonious 
Regularization”

Initialize GA with 2DSA 
results

Perform calculations on 
a supercomputer

                                   Borries Demeler – Advances in Sedimentation Analysis p. 35



  

2DSA Result is used to initialize
Genetic Algorithms

Genetic algorithms find 
the parsimonious 
solution that satisfies 
Occam's Razor

Genetic Algorithms can 
be combined with Monte 
Carlo analysis to explore 
effect of noise on 
parameter distributions.

Perform calculations on 
a supercomputer

                                   Borries Demeler – Advances in Sedimentation Analysis p. 36



Genetic Algorithms (GA) 

Genetic Algorithms (also called evolutionary programming)
provide a stochastic optimization method

John H Holland, Adaption in Natural and Artificial Systems, 1975, U. of 
Michigan Press

John R Koza, Genetic Programming: On the Programming of Computers by 
Means of Natural Selection, 1992, MIT Press

Based on nature – evolutionary paradigm

Mutation, recombination, deletion, insertion, crossover operators

Multiple populations (“demes”) are allowed to compete, limited migration 
rates between demes are allowed.

Random number generators are used to manipulate operators

Generational Model – survival of the fittest (...fitting function)

Generation → iterations, genes → parameter strings, bases → s, D

Each solute is simulated with the Lamm equation, solutes are summed



GA genes:

S1 S2 S3 ... Sn

D1 D2 D3 ... Dn
Gene:

Component 1

Component 2

Component 3

Component n

Genes are strings of parameters, each gene consists of a pair of 
corresponding sedimentation and diffusion coefficients.



Crossover/Recombination 

S1a S2a S3a ... Sna

D1a D2a D3a ... Dna

S1b S2b S3b ... Snb

D1b D2b D3b ... Dnb

Gene A

Generation 1

Recombination

Generation 2

Gene B

S1b S2b S3a ... Sna

D1b D2b D3a ... Dna

S1a S2a S3b ... Snb

D1a D2a D3b ... Dnb



Mutation 

S1a S2a S3a ... Sna

D1a D2a D3a ... Dna

S1b S2b S3b ... Snb

D1b D2b D3b ... Dnb

Gene A

Generation 1

Mutation

Generation 2

Gene B

S1a S2a S3a ... Snc

D1a D2a D3a ... Dna

S1b S2b S3b ... Snb

D1b D2c D3b ... Dnb



Deletion

S1a S2a S3a ... Sna

D1a D2a D3a ... Dna

S1b S2b S3b ... Snb

D1b D2b D3b ... Dnb

Gene A

Generation 1

Deletion

Generation 2

Gene B

S1a S2a S3a ... Sna

D1a D2a D3a ... Dna

S1b S3b ... Snb

D1b D3b ... Dnb



Insertion

S1a S2a S3a ... Sna

D1a D2a D3a ... Dna

S1b S2b S3b ... Snb

D1b D2b D3b ... Dnb

Gene A

Generation 1

Insertion

Generation 2

Gene B

S1a S2a S3a ... Sna

D1a D2a D3a ... Dna

S1b S2b S3b S4b ... Snb

D1b D2b D3b D4b ... Dnb



Deme Topology

G12

G11
G13

G1n

G42

G41
G43

G4n

G22

G21
G23

G2n
G32

G31 G33

G3n

Deme 1

Deme 2

Deme 4

Deme 3



Initialization of Genetic Algorithms

Parameters from all populations are initialized with reasonable 
starting guesses to create “genes”. 

s-values are initialized using the model independent van Holde – 
Weischet analysis*. It provides a good way to assess the limits and 
possible number of components. 

Corresponding diffusion coefficients are randomly assigned based on 
a reasonable range for k=f/f0 values between given limits (i.e. 1-4):

*Demeler, B. and K. E. van Holde. Sedimentation velocity analysis of highly 
heterogeneous systems. (2004). Anal. Biochem. Vol 335(2):279-288

D = RT

18 N  k  2/3  2 1−  
s 



Approach and Implementation - Initialization

Concentration values are determined with NNLS*, components with 
values below a threshold are eliminated.

Demes are initially kept isolated

Mutation/Crossover/Recombination operators are applied

Progeny is calculated and this process is iterated

After some iterations, migration rates are applied and nonlinear 
optimization (Quasi-Newton/Inverse Hessian) is applied for a few 
iterations.

* Lawson, C. L. and Hanson, R. J. 1974. Solving Least Squares Problems. Prentice-
Hall, Inc. Englewood Cliffs, New Jersey



  

Parametrically Constrained Spectrum Analysis

 

Motivation:

We want a method that can model polymerizing systems 
that follow a systematic size/shape growth function (for 
example, end-to-end polymerization) where the anisotropy 
for each size changes in a predictable fashion



Parametrically Constrained Spectrum Analysis

 

Lysozyme: 14.3 kDa
(globular protein)

208 bp DNA: 131.0 kDa
(extended linear dsDNA)

Simple two component system where both components have 
different anisotropy, fitted with a nonlinear method:



  

 
Goal:

Identify a uni-valued parameterization for the 2-dimensional size and 
shape domain that models polymer growth as function of its intrinsic 
shape changes. Constrain molecular weight to a single anisotropy.

                                   Borries Demeler – Advances in Sedimentation Analysis p. 48

Lysozyme:
s = 1.63
D = 9.94 
 f/f0 = 1.35
vbar = 0.723

DNA:
s = 5.37
D = 2.29
f/f0 = 3.04
vbar = 0.565



Parametrically Constrained Spectrum Analysis

 

C(s) is a uni-valued parameterization of the 
search space uses a uni-dimensional grid with 
a single fitted, weight-averaged frictional ratio:

                                   Borries Demeler – Advances in Sedimentation Analysis p. 49



 

Genetic algorithms give the right answer, 
but computationally expensive

                                   Borries Demeler – Advances in Sedimentation Analysis p. 50



Parametrically Constrained Spectrum Analysis

 

                                   Borries Demeler – Advances in Sedimentation Analysis p. 51

Motivation:

We want a general method that 
can model polymerizing systems 
that follow a systematic size-
anisotropy growth function (e.g., 
end-to-end polymerization) where 
the anisotropy for each size 
changes in a predictable fashion, 
using a uni-valued relationship 
that maps one size to one 
anisotropy value.



Parametrically Constrained Spectrum Analysis

 

PCSA Approach:

● Select any single-valued function (straight line, 
hyperbolic functions, increasing/decreasing sigmoid, 
exponential growth/decay, etc.)

● Generate a discrete grid of functions by varying the 
function's parameters to achieve a good coverage 
between the user-selected limits for the 2-
dimensional range <f/f0,min, f/f0,max>, <smin, smax>.

● Discretize each function over the 2-dimensional 
parameter space and solve with finite element and 
NNLS.

                                   Borries Demeler – Advances in Sedimentation Analysis p. 52



 



Select the NNLS fit with the lowest RMSD and perform a Levenberg-
Marquardt fit of the function's parameters to find the best model.

Parametrically Constrained Spectrum Analysis

                                   Borries Demeler – Advances in Sedimentation Analysis p. 54



Overlay plots for PCSA (red) with Genetic Algorithm - Monte Carlo (blue)

                                   Borries Demeler – Advances in Sedimentation Analysis p. 55



Parametrically Constrained Spectrum Analysis

 

Increasing sigmoidal parameterization for a DNA 
restriction digest mixture with 6 fragments of different 

concentration (50 iteration Monte Carlo analysis): 

                                   Borries Demeler – Advances in Sedimentation Analysis p. 56



Parametrically Constrained Spectrum Analysis

 

Straight line PCSA 
Monte Carlo results for 
two DNA fragments in 
150 mM NaCl



Parametrically Constrained Spectrum Analysis

f/f0 = 7.2

f/
f 0

 =
 7

.2



  

C(s)/C(MW) Method (P. Schuck)

f / f 0 = 4

f / f 0 = 1.25

f / f 0 = 4

f / f 0 = 4



Parametrically Constrained Spectrum Analysis

f/f0 = 7.2

C(s) analysis,
high RMSD

PCSA analysis, 
low RMSD



Parametrically Constrained Spectrum Analysis

f/f0 = 7.2

C(s) is unreliable for fitting any velocity data except when anisotropy is constant. 
The PCSA method produces more reliable distributions and molar mass

PCSA

C(s)

Target
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