Lipid Nanoparticle (LNP) Characterization

LNPs are used to deliver cancer drugs and gene therapies:

- Doxil (liposomal doxirubicin, treats solid tumors)
- Marqibo (liposomal vincristine, treats acute lymphoblastic leukemia)
- Onpattro (siRNA, treats polyneuropathy caused by hereditary transthyretinmediated amyloidosis)
- SARS-CoV-2 vaccines (mRNA cargo, Covid-19 vaccines, Pfizer-Biontech, Moderna)

Lipid Nanoparticle (LNP) Characterization by MW-AUC

Amy Henrickson, Univ. Lethbridge Dr. Pieter Cullis and Dr. Jayesh Kulkarni, University of British Columbia

www.acsnano.org

Density Matching Multi-wavelength Analytical Ultracentrifugation to Measure Drug Loading of Lipid Nanoparticle Formulations

Amy Henrickson, Jayesh A. Kulkarni, Josh Zaifman, Gary E. Gorbet, Pieter R. Cullis, and Borries Demeler*

ARTIC

ACS Nano 2021, 15, 5068-5076

Measuring Lipid Nanoparticle loading with RNA

Challenges:

- Heterogeneity in LNP size
- Heterogeneity in RNA loading
- Unknown amount of unincorporated RNA, if any
- Clinically relevant loaded LNPs and empty LNPs look identical in cryo-TEM
- DLS and SEC too low in resolution and don't differentiate by loading

Focus on what's different:

- Liposomes and RNA have different
 absorbance spectra and densities
- Liposomes with different RNA loading ratios have different densities
- Different sizes have different
 hydrodynamic radii
- Liposomes with different sizes and different RNA loading will vary in *molar mass*

Experimental Design:

- Measure Mie scattering and siRNA absorbance by MW-AUC
- SV-AUC differentiates based on s and D
- Perform D₂O density matching
 - 1) obtain partial specific volume distributions
 - 2) derive molar mass distribution
 - 3) derive hydrodynamic radii
- Integrate constraints from orthogonal methods (cryo-TEM)

$$M = \frac{\mathbf{S} RT}{\mathbf{D}(1 - \overline{\mathbf{v}} \rho)}$$

<u>Step 1:</u>

Perform D₂O density matching analysis Approach: Measure RNA control in 4 D₂O Concentrations Derive partial specific volume distribution and heterogeneity

<u>Step 2:</u>

Repeat for Lipid Nanoparticle sample Derive molar masses and hydrodynamic radii distributions

<u>Step 3:</u>

Perform MW-AUC experiment Deconvolute nucleic acids and liposome Validate partial specific volume distribution

Step 1: Measure RNA control in 4 D₂O Concentrations

Step 2: Create Integral G(s) Distributions:

Step 3: Determine s-values at each boundary fraction

Step 3: Extrapolate equivalent boundary fractions to zero S

The inverse of the density at s=0 is equivalent to the partial specific volume at that boundary fraction. This can be repeated for each boundary fraction to derive a PSV distribution.

Repeat for each Lipid Nanoparticle Preparation:

(Lipids are less dense than water or heavy water and float – negative s-values)

Extrapolate each boundary fraction to zero sedimentation to derive the partial specific volume of this heterogeneous mixture:

... or any other biopolymer:

...or any a different cargo (mRNA):

...or any a different cargo (mRNA):

Report Particle Sizes based on known Anisotropy (φ):

$$\phi = \frac{f}{f_0} = 1.0, \quad D = \frac{RT}{9\pi\eta\phi N} \left(\frac{2s\phi\,\overline{\nu}\,\eta}{1-\overline{\nu}\rho}\right)^{-0.5}$$

Report Particle Sizes and Molar Masses:

Deconvolute Liposome Absorbance from RNA Absorbance:

UV spectral properties of RNA (green), empty LNP (red), and RNA-loaded LNPs (blue).

Deconvolute Liposome Absorbance from RNA Absorbance:

Dashed Lines: Liposome scattering signal Solid Lines: RNA absorbance signal

NP1 at 260 nm, NP1 using fluorescence siRNA at 260 nm (2.58s)

Software Demo – Custom Grid