

Structural and Functional Characterization of the Acidic Region from the RIZ Tumor Suppressor

Yizhi Sun, Jessica M. Stine, Daniel Z. Atwater, Ayesha Sharmin, J. B. Alexander Ross and Klara Briknarová

> Jason Luddu BCHM 4850 March 1st, 2023

Background Information

- RIZ, RB protein
- Acidic region of RIZ
- The binding sequence of Rb.
- Objectives

Results

• Pictures will do a better job than this little box can show

02

Experiments

- NMR
- Isothermal titration calorimetry
- Fluorescence anisotropy experiments

)4

Conclusion

- AR is intrinsically disordered
- AR region does bind to Rb
- IRCDE plays a large role in binding to RB
- Kd is similar to viral oncoproteins

What is the focus of this presentation?

How does the mechanism of RIZ binding work?

- The make up of RIZ
- **RIZ1 vs RIZ2** \geq
- The Acidic Region (AR)
- Zinc Finger motifs
- The make up of Rb
- Cyclin Box B
- Similarity of the AR to the consensus RBbinding sequence
- **LXCXE** Sequence

Figure 1. Schematic representation of RIZ1, Rb, and the recombinant constructs used in this study. In RIZ1, the PR(SET) domain is colored red, the acidic region (AR) orange, and the C2H2-like zinc finger domains light blue. The position of the IRCDE motif is indicated. In the Rb protein, cyclin boxes A and B that form the pocket domain are colored blue and green, respectively. The sequence between the cyclin boxes (residues 582-635; dashed) in the RbAB construct is replaced with a two-residue linker (EF).

Rb binding sequence

Zooming in on RB Protein

- What will mutations to the LXCXE-binding sequence cause?
- What does the binding site cause interactions with?

Objectives:

- AR is intrinsically disordered
- Interaction of RIZ to Rb shows direct contact physically and not just functionally, and does not require bridging molecules.
- If the homologous region, IRCDE, is responsible for the binding of RIZ to Rb
- RIZ binding has a similar affinity that is comparable to the affinity of peptides containing the LXCXE motif of viral oncoproteins (K_d 100-200nM)

How were RIZ and Rb Prepared For Experimental Use?

RbAB

Recombinant Forms • of the Acidic Regions of the RIZ Protein Were Used.

AR-N

AR-C

ns ons		Hs RIZ 1 Rn RIZ 1 Bt RIZ 1	20 97 FTSA 96 STFA 96 PSPA	0 NMRDSAEG NMRGSAEG NMRDSAEG	210 PKEDEEK PKEEDER PKDEDEN	220 PSASAL PLASAP PSASTT	EQPATLO EQPAPL EQPAVPO	230 QEVASQE PEVGNQI QEAVSQI	240 EVPPELAT DAVPQVA DVPPDLAL	0 FPAPAWEI I PL PACEI PPPAHEI	250 PQPEPD PQPEVD PQTGPD	ERLEAAA GKQEVTE SELEAAL	60 CEVNDLGE CEVNDVE CEANEVVE	E E
		Hs RIZ Rn RIZ Bt RIZ	270 , EEEEEEE ELEEEEE EE	280 DEEEEED L EE	DDDD <mark>EL</mark> E EEEEELG EEEEELE	DEGEEE EDGVEE EEGDEA	300 A SMPNE A DMPNES A DVPNES	SAKEPE SAKEPE	310 IRCEEKP IRCEEKP	320 PEDLLEEF PEDLLEEF PEDLLEEF	YKTTSE PQSMSN PKTVSK	330 TLEDCS AREDSP TLADSA	340 EVTPAM 3 DVTPPP 3 EAAPVV 3	41 36 29
269	Figure 2. taurus (F respective Filled rec high prop 291, 292, residues	Amino ac (1N790) is ely, and the d circles ma portion of a , 295, and 2 with missir	id sequenc highlighted e peptides rk residues acidic resid 296) are gl ng assignm	te of AR. Se d by blue sh used in this s whose ¹ H lues, 45 glu lutamates a ents (214,	equence con ading. The s study are and ¹⁵ N bac tamates (30 nd aspartate 229, 234, a	nservation spans of t marked w ckbone an 0%) and 1 es that are nd 254) a	in RIZ p he recom ith green hide chem 4 aspartat located i re glutam	roteins fro binant AR and red b ical shifts res (9%), n the high ates in ot	om <i>Homo s</i> -N and AR oxes. The are assigne and the ma hy degener her parts o	tapiens (Q1 R-C protein extent of b d, and emp ajority of re- rate central of AR.	3029), R construc ackbone oty red cir sidues wi region o	attus norve ts are show assignmen ccles denot ith missing f the AR o	egicus (Q637 wn as green a t in AR is al te prolines. A g assignment construct. Th	55), and Ba and red bars so indicated R contains s (269–288 ne remainin

372

581 636

787

Cyclin Boxes A and B ٠ Were Amplified **Resulting In The Protein Construct RbAB**

197 269

Nuclear Magnetic Resonance (NMR) Spectroscopy

What Is NMR and The Setup

- ¹³C and ¹⁵N or just ¹⁵N
- Chemical shifts in AR were based of 3D ROCSY, HNCACB, CBCA(CO)NH, C(CCO)NH, HNCO, and HN(CA)CO spectra.
- Nuclear Overhauser effect (NOE)
- Heteronuclear single-quantum correlation HSQC
- SSP scores

Nuclear Magnetic Resonance (NMR) Spectroscopy

Results / Conclusions

 Unfolded protein and highly flexible -Intrinsically Disordered

Figure 3. 2D $^{1}H^{-15}N$ HSQC spectrum of ^{15}N -labeled AR. The crowded central region is shown expanded in the right panel. Sequence specific assignments are indicated, and signals from several aspartates (D) and glutamates (E) that have not been assigned in a sequence specific manner are also labeled.

Figure 4. $^{1}\mathrm{H}-^{15}\mathrm{N}$ heteronuclear NOE in AR. A reference spectrum without $^{1}\mathrm{H}$ saturation is shown in the left panel, and a $^{1}\mathrm{H}-^{15}\mathrm{N}$ NOE spectrum with $^{1}\mathrm{H}$ saturation is shown in the right panel. Positive and negative contour levels are colored green and red, respectively. There are no observable positive signals in the $^{1}\mathrm{H}-^{15}\mathrm{N}$ NOE spectrum.

Nuclear Magnetic Resonance (NMR) Spectroscopy

Results / Conclusions Continued

- Figure 6 (HSQC)
- Residues 306-322 affected most by RbAB binding
- Residues 255-267 also affected by RBAB binding. (Lower affinity)
- > AR regions are binding to RB
- Figure 9 (HSQC)
- Black Peaks line up with Red Peaks
- AR-N is binding to RB

Figure 6. Effect of RbAB on NMR spectra of AR. (A) Superimposed 2D ¹H-¹N HSQC spectra of 86 μ M ¹N-labeled AR alone (black) or in the presence of an \sim 2-fold molar excess of RbAB (red). (B) Same as panel A, but the sample with 86 μ M ¹⁵N-labeled AR and an \sim 2-fold molar excess of RbAB (red) also contained a 34-fold molar excess of the RIZ(309–319) peptide.

Figure 9. Effect of RibAB on NMR spectra of AR-N and AR-C. (A) Superimposed 2D ¹H—¹⁵N HSQC spectra of 45 μ M ¹⁵N-labeled AR-N alone (black) or in the presence of an ~1.3-fold molar excess of RbAB (red). (B) Superimposed 2D ¹H—¹⁵N HSQC spectra of 167 μ M ¹⁵N-labeled AR-C alone (black) or in the presence of an ~1.4-fold molar excess of RbAB (red). For each construct, the spectral region that is boxed in the left panel is shown expanded on the right, and assignments for the signals that are the most affected by RbAB are indicated.

Isothermal Titration Calorimetry (ITC)

> What Is ITC and The Setup

- RbAb injected into the calorimeter (heats of binding)
- Affinity of RbAb for AR-N and FITZ-RIZ(254-267)
 - -Dissoication Constant

Isothermal titration calorimetry (ITC)

Isothermal Titration Calorimetry (ITC)

Results / Conclusions

- AR + RbAB
- AR-N + RbAB
- AR-C +RbAB
- AR-C binds to RbAB. AR-N?

Isothermal titration calorimetry (ITC)

Figure 8. Calorimetric titrations of AR, AR-N, and AR-C with RbAB. Representative ITC traces and binding curves fit to the data using a singlebinding site model are shown in the top and bottom panels, respectively. (A) Titration of 28 μ M AR with 486 μ M RbAB. (B) Titation of 39 μ M AR-N with 524 μ M RbAB. (C) Titration of 48 μ M AR-C with 524 μ M RbAB.

Fluorescence Anisotropy

What Is Fluorescence Anisotropy and The Setup

- Direct Binding Assays
- Competitive Binding Assays
- Dissociation
 Constants

Fluorescence Anisotropy

Results / Conclusions

- AR-N-FITC peptide + RbAB
- AR-C-FITC peptide + RbAB
- (AR-N-FITC peptide + RbAB) +AR-N = (AR-N + RbAB) + AR-N-FITC peptide

- (AR-C-FITC peptide + RbAB) +AR-C = (AR-C + RbAB) + AR-C-FITC peptide
- AR-C AND AR-N bind to RbAB

Figure 11. Fluorescence anisotropy binding assays. (A) Direct binding experiment with 0.33 μ M FITC-RIZ(254–267) and the concentration of RbAB varied. (B) Competitive binding experiment with 0.33 μ M FITC-RIZ(254–267), 91 μ M RbAB, and the concentration of AR-N varied. (C) Direct binding experiment with 0.40 μ M FITC-RIZ(309–319) and the concentration of RbAb varied. (D) Competitive binding experiment with 0.20 μ M FITC-RIZ(309–319), 0.80 μ M RbAB, and the concentration of AR-C varied. The binding curves fit to the data are shown as black lines. The experiments with FITC-RIZ(254–267) and FITC-RIZ(309–319) were performed at 25 and 20 °C, respectively.

> ITC Results / Conclusions (Continued) Competitive ITC Experiment \geq RbAB + AR-N peptide + AR-C RbAB + AR-N + AR-CTime (min) Time (min) Α B 0 5 10 15 20 25 30 10 15 20 25 30 35 40 ucal/sec ucal/sec AR-N-FITC peptide + (RbAB +AR-C) -0.2 -0.2 = AR-C + (RbAB + AR-N-FITC -0. -0.4

```
AR-N + (RbAB + AR-C) = AR-C +
(RbAB + AR-N)
```

peptide)

AR-N does bind to RbAB \blacktriangleright $\Delta H^{\circ} = 0$ for prior ITC Experiment Figure 12. Calorimetric titrations of RbAB with AR-C in the presence of FITC-RIZ(254-267) or AR-N. (A) Titration of 20 µM RbAB with 1154 µM AR-C in the presence of 650 µM FITC-RIZ(254-267). (B) Titration of 9 µM RbAB with 984 µM AR-C in the presence of 459 μ M AR-N. Representative ITC traces and binding curves fit to the data are shown in the top and bottom panels, respectively.

2

Molar Ratio

3

kcal/mole of injectant

of

Ω

2 3 4

Molar Ratio

0

Ω

kcal/mole of injectant

SUMMARY

- AR is intrinsically disordered
- The AR region of the RIZ protein does bind RB
- The homologous region, in the AR, region, IRCDE is responsible of binding to RB
- RIZ has similar affinity when compared to other peptides containing the LXCXE motifs

Sources:

[1] Sun Y, Stine JM, Atwater DZ, Sharmin A, Ross JB, Briknarová K. Structural and functional characterization of the acidic region from the RIZ tumor suppressor. Biochemistry. 2015 Feb 17;54(6):1390-400.

[2] Klara Briknarová, Biophysics 4850 Lecture Notes (Spring 2023).

[3] Dahiya A, Gavin MR, Luo RX, Dean DC. Role of the LXCXE binding site in Rb function. Mol Cell Biol. 2000 Sep;20(18):6799-805. doi: 10.1128/MCB.20.18.6799-6805.2000

Image Sources:

Slide 4:

https://proteopedia.pub/entry/history/show/2981 https://proteopedia.org/cgi-bin/pubready https://www.rcsb.org/structure/2jv0 https://www.researchgate.net/figure/The-Functional-Domains-of-RIZ-Family-Protein-Schematic-was-illustrated-based-on-the_fig1_232704201

Slide 6: https://journals.asm.org/doi/10.1128/MCB.20.18.6799-6805.2000

Slide 11: https://www.compoundchem.com/2015/02/24/proton-nmr/

Slide 13: Klara Briknarová, Biophysics 4850 Lecture Notes (Spring 2023)

Slide 15:

Rossi AM, Taylor CW. Analysis of protein-ligand interactions by fluorescence polarization. Nat Protoc. 2011 Mar;6(3):365-87. doi: 10.1038/nprot.2011.305.